File size: 9,449 Bytes
030a0f8
 
 
 
 
 
 
 
147f159
 
030a0f8
 
 
 
 
ffdcf9b
 
 
 
92ec35a
 
e7e873a
030a0f8
c3ce809
 
881cfda
aaf61e5
ba6e259
c3ce809
 
 
a14f488
 
 
 
 
 
 
 
 
 
 
 
c3ce809
ffdcf9b
c3ce809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea5bdc0
c3ce809
 
0405bbc
 
 
 
f57bdfa
0405bbc
 
 
 
 
 
 
 
030a0f8
 
7e5a783
ffdcf9b
 
 
 
 
 
 
 
 
 
d29599d
 
 
 
 
ffdcf9b
92ec35a
ffdcf9b
92ec35a
b5beaeb
030a0f8
c3ce809
 
 
030a0f8
 
c3ce809
 
030a0f8
147f159
47f9ff2
 
b5beaeb
47f9ff2
f57bdfa
 
47f9ff2
c3ce809
bf20d4a
f57bdfa
 
beee43b
 
f57bdfa
5b17178
aa718cd
f3b65af
5b17178
 
8f9df38
cb4bf13
8f9df38
b5beaeb
5d91754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df20599
cb4bf13
 
 
 
 
 
 
5d91754
cb4bf13
 
9320186
b5beaeb
 
 
 
01f8fc1
 
9f69cab
7ff7323
 
87f68f3
 
 
 
 
cce302e
 
b5251fc
01f8fc1
 
87f68f3
9f69cab
7ff7323
 
a14f488
 
 
030a0f8
367e85c
030a0f8
 
 
 
 
7ff7323
 
030a0f8
 
96c87f9
030a0f8
 
 
d320fdd
47f9ff2
 
 
 
 
 
0405bbc
01f8fc1
 
d320fdd
e15d353
030a0f8
 
47f9ff2
 
53cf441
 
47f9ff2
 
333ca76
53cf441
030a0f8
 
8aae6e9
 
 
 
7e5a783
0405bbc
 
8aae6e9
030a0f8
9dc62b8
 
 
 
030a0f8
d2c745e
aee37f1
030a0f8
 
 
01f8fc1
030a0f8
47f9ff2
aee37f1
8aae6e9
030a0f8
d2c745e
c07b0b4
030a0f8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
from typing import Tuple

import streamlit as st

import torch

import transformers

from transformers import AutoConfig
import tokenizers

from sampling import CAIFSampler, TopKWithTemperatureSampler
from generator import Generator

import pickle

from plotly import graph_objects as go

import numpy as np

device = "cuda" if torch.cuda.is_available() else "cpu"

ATTRIBUTE_MODELS = {
    "English": (
        "distilbert-base-uncased-finetuned-sst-2-english",
        "unitary/toxic-bert",
        "cardiffnlp/twitter-roberta-base-sentiment-latest",
    )
}

CITE = """@misc{https://doi.org/10.48550/arxiv.2205.07276,
  doi = {10.48550/ARXIV.2205.07276},
  url = {https://arxiv.org/abs/2205.07276},
  author = {Sitdikov, Askhat and Balagansky, Nikita and Gavrilov, Daniil and Markov, Alexander},
  keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
  title = {Classifiers are Better Experts for Controllable Text Generation},
  publisher = {arXiv},
  year = {2022},
  copyright = {Creative Commons Attribution 4.0 International}
}
"""

LANGUAGE_MODELS = {
    "English": ("gpt2", "distilgpt2", "EleutherAI/gpt-neo-1.3B")
}

ATTRIBUTE_MODEL_LABEL = {
    "English": "Choose attribute model"
}

LM_LABEL = {
    "English": "Choose language model",
}

ATTRIBUTE_LABEL = {
    "English": "Choose desired attribute",
}

TEXT_PROMPT_LABEL = {
    "English": "Text prompt",
}

PROMPT_EXAMPLE = {
    "English": "Hello there",
}

WARNING_TEXT = {
    "English": """
    **Warning!**
    
    If you are clicking checkbox bellow positive """ + r"$\alpha$" + """ values for CAIF sampling become available.
    It means that language model will be forced to produce toxic or/and abusive text.
    This space is only a demonstration of our method for controllable text generation 
    and we are not responsible for the content produced by this method.
    
    **Please use it carefully and with positive intentions!**
    """,
}


def main():
    st.header("CAIF")
    with open("entropy_cdf.pkl", "rb") as inp:
        x_s, y_s = pickle.load(inp)
    scatter = go.Scatter({
        "x": x_s,
        "y": y_s,
        "name": "GPT2",
        "mode": "lines",
    }
    )
    layout = go.Layout({
        "yaxis": {
            "title": "Speedup",
            "tickvals": [0, 0.5, 0.8, 1],
            "ticktext": ["1x", "2x", "5x", "10x"]
        },
        "xaxis": {"title": "Entropy threshold"},
        "template": "plotly_white",
    })

    language = "English"
    cls_model_name = st.selectbox(
        ATTRIBUTE_MODEL_LABEL[language],
        ATTRIBUTE_MODELS[language]

    )
    lm_model_name = st.selectbox(
        LM_LABEL[language],
        LANGUAGE_MODELS[language]
    )
    cls_model_config = AutoConfig.from_pretrained(cls_model_name)
    if cls_model_config.problem_type == "multi_label_classification":
        label2id = cls_model_config.label2id
        label_key = st.selectbox(ATTRIBUTE_LABEL[language], label2id.keys())
        target_label_id = label2id[label_key]
        act_type = "sigmoid"
    elif cls_model_config.problem_type == "single_label_classification":
        label2id = cls_model_config.label2id
        label_key = st.selectbox(ATTRIBUTE_LABEL[language], [list(label2id.keys())[-1]])
        target_label_id = 1
        act_type = "sigmoid"
    else:
        label_key = st.selectbox(ATTRIBUTE_LABEL[language], ["Negative"])
        target_label_id = 0
        act_type = "softmax"

    st.markdown(r"""In our method, we reweight the probability of the next token with the external classifier, namely, the Attribute model. If $\alpha$ parameter is equal to zero we can see that the distribution below collapses into a simple language model without any modification. If alpha is below zero then every generation step attribute model tries to minimize the probability of the desired attribute. Otherwise, the model is forced to produce text with a higher probability of the attribute.""")
    st.latex(r"p(x_i|x_{<i}, c) \propto p(x_i|x_{<i})p(c|x_{\leq i})^{\alpha}")
    st.write(WARNING_TEXT[language])
    show_pos_alpha = st.checkbox("Show positive alphas", value=False)
    if act_type == "softmax":
        alpha = st.slider("α", min_value=-30, max_value=30 if show_pos_alpha else 0, step=1, value=0)
    else:
        alpha = st.slider("α", min_value=-5, max_value=5 if show_pos_alpha else 0, step=1, value=0)
    with st.expander("Advanced settings"):
        entropy_threshold = st.slider("Entropy threshold", min_value=0., max_value=10., step=.1, value=2.)
        plot_idx = np.argmin(np.abs(entropy_threshold - x_s))
        scatter_tip = go.Scatter({
            "x": [x_s[plot_idx]],
            "y": [y_s[plot_idx]],
            "mode": "markers"
        })
        scatter_tip_lines = go.Scatter({
            "x": [0, x_s[plot_idx]],
            "y": [y_s[plot_idx]] * 2,
            "mode": "lines",
            "line": {
                "color": "grey",
                "dash": "dash"
            }
        })
        figure = go.Figure(data=[scatter, scatter_tip, scatter_tip_lines], layout=layout)
        figure.update_layout(paper_bgcolor="#FFFFFF", plot_bgcolor='#FFFFFF', showlegend=False)
        st.plotly_chart(figure, use_container_width=True)
        st.subheader("What is it?")
        st.write("Text generation with an external classifier requires a huge amount of computation. "
                 "Therefore text generating with CAIF could be slow. "
                 "To overcome this issue, we can apply reweighting not for every step. "
                 "Our hypothesis is that we can run reweighting only "
                 "if entropy of the next token is above certain threshold. "
                 "This strategy will reduce the amount of computation. "
                 "Note that if entropy threshold is too high, we don't get desired attribute in generated text")
        fp16 = st.checkbox("FP16", value=True)
        st.write("FP16 computation is faster in comparison with full precision, "
                 "but sometimes could yield Nones (especially with large alphas).")
    st.session_state["generated_text"] = None
    if "sst" in cls_model_name:
        prompt = st.text_input(TEXT_PROMPT_LABEL[language], "The movie")
    else:
        prompt = st.text_input(TEXT_PROMPT_LABEL[language], PROMPT_EXAMPLE[language])
    num_tokens = st.slider("# tokens to be generated", min_value=5, max_value=40, step=1, value=20)
    num_tokens = int(num_tokens)
    st.subheader("Generated text:")

    def generate():
        text = inference(
            lm_model_name=lm_model_name,
            cls_model_name=cls_model_name,
            prompt=prompt,
            alpha=alpha,
            target_label_id=target_label_id,
            entropy_threshold=entropy_threshold,
            fp16=fp16,
            act_type=act_type,
            num_tokens=num_tokens
        )

    st.button("Generate new", on_click=generate())

    st.subheader("Citation")
    st.code(CITE)


@st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_generator(lm_model_name: str) -> Generator:
    with st.spinner('Loading language model...'):
        generator = Generator(lm_model_name=lm_model_name, device=device)
        return generator


# @st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_sampler(cls_model_name, lm_tokenizer):
    with st.spinner('Loading classifier model...'):
        sampler = CAIFSampler(classifier_name=cls_model_name, lm_tokenizer=lm_tokenizer, device=device)
        return sampler


def inference(
        lm_model_name: str,
        cls_model_name: str,
        prompt: str,
        fp16: bool = True,
        alpha: float = 5,
        target_label_id: int = 0,
        entropy_threshold: float = 0,
        act_type: str = "sigmoid",
        num_tokens=10,
) -> str:
    torch.set_grad_enabled(False)
    generator = load_generator(lm_model_name=lm_model_name)
    lm_tokenizer = transformers.AutoTokenizer.from_pretrained(lm_model_name)
    if alpha != 0:
        caif_sampler = load_sampler(cls_model_name=cls_model_name, lm_tokenizer=lm_tokenizer)
        if entropy_threshold < 0.05:
            entropy_threshold = None
    else:
        caif_sampler = None
        entropy_threshold = None

    generator.set_caif_sampler(caif_sampler)
    ordinary_sampler = TopKWithTemperatureSampler()
    kwargs = {
        "top_k": 20,
        "temperature": 1.0,
        "top_k_classifier": 100,
        "classifier_weight": alpha,
        "target_cls_id": target_label_id,
        "act_type": act_type
    }
    generator.set_ordinary_sampler(ordinary_sampler)
    if device == "cpu":
        autocast = torch.cpu.amp.autocast
    else:
        autocast = torch.cuda.amp.autocast
    with autocast(fp16):
        print(f"Generating for prompt: {prompt}")
        progress_bar = st.progress(0)
        sequences, tokens = generator.sample_sequences(
            num_samples=1,
            input_prompt=prompt,
            max_length=num_tokens,
            caif_period=1,
            entropy=entropy_threshold,
            progress_bar=progress_bar,
            **kwargs
        )
        print(f"Output for prompt: {sequences}")

    return sequences[0]


if __name__ == "__main__":
    main()