File size: 9,449 Bytes
030a0f8 147f159 030a0f8 ffdcf9b 92ec35a e7e873a 030a0f8 c3ce809 881cfda aaf61e5 ba6e259 c3ce809 a14f488 c3ce809 ffdcf9b c3ce809 ea5bdc0 c3ce809 0405bbc f57bdfa 0405bbc 030a0f8 7e5a783 ffdcf9b d29599d ffdcf9b 92ec35a ffdcf9b 92ec35a b5beaeb 030a0f8 c3ce809 030a0f8 c3ce809 030a0f8 147f159 47f9ff2 b5beaeb 47f9ff2 f57bdfa 47f9ff2 c3ce809 bf20d4a f57bdfa beee43b f57bdfa 5b17178 aa718cd f3b65af 5b17178 8f9df38 cb4bf13 8f9df38 b5beaeb 5d91754 df20599 cb4bf13 5d91754 cb4bf13 9320186 b5beaeb 01f8fc1 9f69cab 7ff7323 87f68f3 cce302e b5251fc 01f8fc1 87f68f3 9f69cab 7ff7323 a14f488 030a0f8 367e85c 030a0f8 7ff7323 030a0f8 96c87f9 030a0f8 d320fdd 47f9ff2 0405bbc 01f8fc1 d320fdd e15d353 030a0f8 47f9ff2 53cf441 47f9ff2 333ca76 53cf441 030a0f8 8aae6e9 7e5a783 0405bbc 8aae6e9 030a0f8 9dc62b8 030a0f8 d2c745e aee37f1 030a0f8 01f8fc1 030a0f8 47f9ff2 aee37f1 8aae6e9 030a0f8 d2c745e c07b0b4 030a0f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import os
from typing import Tuple
import streamlit as st
import torch
import transformers
from transformers import AutoConfig
import tokenizers
from sampling import CAIFSampler, TopKWithTemperatureSampler
from generator import Generator
import pickle
from plotly import graph_objects as go
import numpy as np
device = "cuda" if torch.cuda.is_available() else "cpu"
ATTRIBUTE_MODELS = {
"English": (
"distilbert-base-uncased-finetuned-sst-2-english",
"unitary/toxic-bert",
"cardiffnlp/twitter-roberta-base-sentiment-latest",
)
}
CITE = """@misc{https://doi.org/10.48550/arxiv.2205.07276,
doi = {10.48550/ARXIV.2205.07276},
url = {https://arxiv.org/abs/2205.07276},
author = {Sitdikov, Askhat and Balagansky, Nikita and Gavrilov, Daniil and Markov, Alexander},
keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Classifiers are Better Experts for Controllable Text Generation},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
"""
LANGUAGE_MODELS = {
"English": ("gpt2", "distilgpt2", "EleutherAI/gpt-neo-1.3B")
}
ATTRIBUTE_MODEL_LABEL = {
"English": "Choose attribute model"
}
LM_LABEL = {
"English": "Choose language model",
}
ATTRIBUTE_LABEL = {
"English": "Choose desired attribute",
}
TEXT_PROMPT_LABEL = {
"English": "Text prompt",
}
PROMPT_EXAMPLE = {
"English": "Hello there",
}
WARNING_TEXT = {
"English": """
**Warning!**
If you are clicking checkbox bellow positive """ + r"$\alpha$" + """ values for CAIF sampling become available.
It means that language model will be forced to produce toxic or/and abusive text.
This space is only a demonstration of our method for controllable text generation
and we are not responsible for the content produced by this method.
**Please use it carefully and with positive intentions!**
""",
}
def main():
st.header("CAIF")
with open("entropy_cdf.pkl", "rb") as inp:
x_s, y_s = pickle.load(inp)
scatter = go.Scatter({
"x": x_s,
"y": y_s,
"name": "GPT2",
"mode": "lines",
}
)
layout = go.Layout({
"yaxis": {
"title": "Speedup",
"tickvals": [0, 0.5, 0.8, 1],
"ticktext": ["1x", "2x", "5x", "10x"]
},
"xaxis": {"title": "Entropy threshold"},
"template": "plotly_white",
})
language = "English"
cls_model_name = st.selectbox(
ATTRIBUTE_MODEL_LABEL[language],
ATTRIBUTE_MODELS[language]
)
lm_model_name = st.selectbox(
LM_LABEL[language],
LANGUAGE_MODELS[language]
)
cls_model_config = AutoConfig.from_pretrained(cls_model_name)
if cls_model_config.problem_type == "multi_label_classification":
label2id = cls_model_config.label2id
label_key = st.selectbox(ATTRIBUTE_LABEL[language], label2id.keys())
target_label_id = label2id[label_key]
act_type = "sigmoid"
elif cls_model_config.problem_type == "single_label_classification":
label2id = cls_model_config.label2id
label_key = st.selectbox(ATTRIBUTE_LABEL[language], [list(label2id.keys())[-1]])
target_label_id = 1
act_type = "sigmoid"
else:
label_key = st.selectbox(ATTRIBUTE_LABEL[language], ["Negative"])
target_label_id = 0
act_type = "softmax"
st.markdown(r"""In our method, we reweight the probability of the next token with the external classifier, namely, the Attribute model. If $\alpha$ parameter is equal to zero we can see that the distribution below collapses into a simple language model without any modification. If alpha is below zero then every generation step attribute model tries to minimize the probability of the desired attribute. Otherwise, the model is forced to produce text with a higher probability of the attribute.""")
st.latex(r"p(x_i|x_{<i}, c) \propto p(x_i|x_{<i})p(c|x_{\leq i})^{\alpha}")
st.write(WARNING_TEXT[language])
show_pos_alpha = st.checkbox("Show positive alphas", value=False)
if act_type == "softmax":
alpha = st.slider("α", min_value=-30, max_value=30 if show_pos_alpha else 0, step=1, value=0)
else:
alpha = st.slider("α", min_value=-5, max_value=5 if show_pos_alpha else 0, step=1, value=0)
with st.expander("Advanced settings"):
entropy_threshold = st.slider("Entropy threshold", min_value=0., max_value=10., step=.1, value=2.)
plot_idx = np.argmin(np.abs(entropy_threshold - x_s))
scatter_tip = go.Scatter({
"x": [x_s[plot_idx]],
"y": [y_s[plot_idx]],
"mode": "markers"
})
scatter_tip_lines = go.Scatter({
"x": [0, x_s[plot_idx]],
"y": [y_s[plot_idx]] * 2,
"mode": "lines",
"line": {
"color": "grey",
"dash": "dash"
}
})
figure = go.Figure(data=[scatter, scatter_tip, scatter_tip_lines], layout=layout)
figure.update_layout(paper_bgcolor="#FFFFFF", plot_bgcolor='#FFFFFF', showlegend=False)
st.plotly_chart(figure, use_container_width=True)
st.subheader("What is it?")
st.write("Text generation with an external classifier requires a huge amount of computation. "
"Therefore text generating with CAIF could be slow. "
"To overcome this issue, we can apply reweighting not for every step. "
"Our hypothesis is that we can run reweighting only "
"if entropy of the next token is above certain threshold. "
"This strategy will reduce the amount of computation. "
"Note that if entropy threshold is too high, we don't get desired attribute in generated text")
fp16 = st.checkbox("FP16", value=True)
st.write("FP16 computation is faster in comparison with full precision, "
"but sometimes could yield Nones (especially with large alphas).")
st.session_state["generated_text"] = None
if "sst" in cls_model_name:
prompt = st.text_input(TEXT_PROMPT_LABEL[language], "The movie")
else:
prompt = st.text_input(TEXT_PROMPT_LABEL[language], PROMPT_EXAMPLE[language])
num_tokens = st.slider("# tokens to be generated", min_value=5, max_value=40, step=1, value=20)
num_tokens = int(num_tokens)
st.subheader("Generated text:")
def generate():
text = inference(
lm_model_name=lm_model_name,
cls_model_name=cls_model_name,
prompt=prompt,
alpha=alpha,
target_label_id=target_label_id,
entropy_threshold=entropy_threshold,
fp16=fp16,
act_type=act_type,
num_tokens=num_tokens
)
st.button("Generate new", on_click=generate())
st.subheader("Citation")
st.code(CITE)
@st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_generator(lm_model_name: str) -> Generator:
with st.spinner('Loading language model...'):
generator = Generator(lm_model_name=lm_model_name, device=device)
return generator
# @st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_sampler(cls_model_name, lm_tokenizer):
with st.spinner('Loading classifier model...'):
sampler = CAIFSampler(classifier_name=cls_model_name, lm_tokenizer=lm_tokenizer, device=device)
return sampler
def inference(
lm_model_name: str,
cls_model_name: str,
prompt: str,
fp16: bool = True,
alpha: float = 5,
target_label_id: int = 0,
entropy_threshold: float = 0,
act_type: str = "sigmoid",
num_tokens=10,
) -> str:
torch.set_grad_enabled(False)
generator = load_generator(lm_model_name=lm_model_name)
lm_tokenizer = transformers.AutoTokenizer.from_pretrained(lm_model_name)
if alpha != 0:
caif_sampler = load_sampler(cls_model_name=cls_model_name, lm_tokenizer=lm_tokenizer)
if entropy_threshold < 0.05:
entropy_threshold = None
else:
caif_sampler = None
entropy_threshold = None
generator.set_caif_sampler(caif_sampler)
ordinary_sampler = TopKWithTemperatureSampler()
kwargs = {
"top_k": 20,
"temperature": 1.0,
"top_k_classifier": 100,
"classifier_weight": alpha,
"target_cls_id": target_label_id,
"act_type": act_type
}
generator.set_ordinary_sampler(ordinary_sampler)
if device == "cpu":
autocast = torch.cpu.amp.autocast
else:
autocast = torch.cuda.amp.autocast
with autocast(fp16):
print(f"Generating for prompt: {prompt}")
progress_bar = st.progress(0)
sequences, tokens = generator.sample_sequences(
num_samples=1,
input_prompt=prompt,
max_length=num_tokens,
caif_period=1,
entropy=entropy_threshold,
progress_bar=progress_bar,
**kwargs
)
print(f"Output for prompt: {sequences}")
return sequences[0]
if __name__ == "__main__":
main()
|