import os from typing import Tuple import streamlit as st import torch import transformers from transformers import AutoConfig import tokenizers from sampling import CAIFSampler, TopKWithTemperatureSampler from generator import Generator import pickle from plotly import graph_objects as go import numpy as np device = "cuda" if torch.cuda.is_available() else "cpu" ATTRIBUTE_MODELS = { "Russian": ( "cointegrated/rubert-tiny-toxicity", "SkolkovoInstitute/russian_toxicity_classifier" ), "English": ( "unitary/toxic-bert", "distilbert-base-uncased-finetuned-sst-2-english", "sgugger/tiny-distilbert-classification", ) } LANGUAGE_MODELS = { "Russian": ( 'sberbank-ai/rugpt3small_based_on_gpt2', "sberbank-ai/rugpt3large_based_on_gpt2" ), "English": ("gpt2", "distilgpt2", "EleutherAI/gpt-neo-1.3B") } ATTRIBUTE_MODEL_LABEL = { "Russian": 'Выберите модель классификации', "English": "Choose attribute model" } LM_LABEL = { "English": "Choose language model", "Russian": "Выберите языковую модель" } ATTRIBUTE_LABEL = { "Russian": "Веберите нужный атрибут текста", "English": "Choose desired attribute", } TEXT_PROMPT_LABEL = { "English": "Text prompt", "Russian": "Начало текста" } PROMPT_EXAMPLE = { "English": "Hello, today I want to show you a new method", "Russian": "Привет, сегодня я" } WARNING_TEXT = { "English": """ **Warning!** If you are clicking checkbox bellow positive """ + r"$\alpha$" + """ values for CAIF sampling become available. It means that language model will be forced to produce toxic or/and abusive text. This space is only a demonstration of our method for controllable text generation and we are not responsible for the content produced by this method. **Please use it carefully and with positive intentions!** """, "Russian": """ **Внимание!** После нажатия на чекбокс ниже положительные """ + r"$\alpha$" + """ станут доступны. Это означает, что языковая модель будет генерировать токсичные тексты. Это демо служит лишь демонстрацией нашего метода контролируемой генерации. Мы не несем ответственности за полученные тексты. **Используйте этот метод осторожно и с положительными намерениями!** """ } def main(): st.header("CAIF") with open("entropy_cdf.pkl", "rb") as inp: x_s, y_s = pickle.load(inp) scatter = go.Scatter({ "x": x_s, "y": y_s, "name": "GPT2", "mode": "lines", } ) layout = go.Layout({ "yaxis": { "title": "Speedup", "tickvals": [0, 0.5, 0.8, 1], "ticktext": ["1x", "2x", "5x", "10x"] }, "xaxis": {"title": "Entropy threshold"}, "template": "plotly_white", }) language = st.selectbox("Language", ("English", "Russian")) cls_model_name = st.selectbox( ATTRIBUTE_MODEL_LABEL[language], ATTRIBUTE_MODELS[language] ) lm_model_name = st.selectbox( LM_LABEL[language], LANGUAGE_MODELS[language] ) cls_model_config = AutoConfig.from_pretrained(cls_model_name) if cls_model_config.problem_type == "multi_label_classification": label2id = cls_model_config.label2id label_key = st.selectbox(ATTRIBUTE_LABEL[language], label2id.keys()) target_label_id = label2id[label_key] act_type = "sigmoid" elif cls_model_config.problem_type == "single_label_classification": label2id = cls_model_config.label2id label_key = st.selectbox(ATTRIBUTE_LABEL[language], [list(label2id.keys())[-1]]) target_label_id = 1 act_type = "sigmoid" else: label2id = cls_model_config.label2id label_key = st.selectbox(ATTRIBUTE_LABEL[language], label2id.keys()) target_label_id = label2id[label_key] act_type = "softmax" st.write(WARNING_TEXT[language]) show_pos_alpha = st.checkbox("Show positive alphas", value=False) prompt = st.text_input(TEXT_PROMPT_LABEL[language], PROMPT_EXAMPLE[language]) st.latex(r"p(x_i|x_{ Generator: with st.spinner('Loading language model...'): generator = Generator(lm_model_name=lm_model_name, device=device) return generator #@st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True) def load_sampler(cls_model_name, lm_tokenizer): with st.spinner('Loading classifier model...'): sampler = CAIFSampler(classifier_name=cls_model_name, lm_tokenizer=lm_tokenizer, device=device) return sampler @st.cache def inference( lm_model_name: str, cls_model_name: str, prompt: str, fp16: bool = True, alpha: float = 5, target_label_id: int = 0, entropy_threshold: float = 0, act_type: str = "sigmoid" ) -> str: torch.set_grad_enabled(False) generator = load_generator(lm_model_name=lm_model_name) lm_tokenizer = transformers.AutoTokenizer.from_pretrained(lm_model_name) if alpha != 0: caif_sampler = load_sampler(cls_model_name=cls_model_name, lm_tokenizer=lm_tokenizer) if entropy_threshold < 0.05: entropy_threshold = None else: caif_sampler = None entropy_threshold = None generator.set_caif_sampler(caif_sampler) ordinary_sampler = TopKWithTemperatureSampler() kwargs = { "top_k": 20, "temperature": 1.0, "top_k_classifier": 100, "classifier_weight": alpha, "target_cls_id": target_label_id, "act_type": act_type } generator.set_ordinary_sampler(ordinary_sampler) if device == "cpu": autocast = torch.cpu.amp.autocast else: autocast = torch.cuda.amp.autocast with autocast(fp16): print(f"Generating for prompt: {prompt}") sequences, tokens = generator.sample_sequences( num_samples=1, input_prompt=prompt, max_length=20, caif_period=1, entropy=entropy_threshold, **kwargs ) print(f"Output for prompt: {sequences}") return sequences[0] if __name__ == "__main__": main()