Spaces:
Runtime error
Runtime error
File size: 15,005 Bytes
7718032 d18130c 849fe7e 7718032 849fe7e 7718032 bc95dd0 4bc845a 219d2af 4bc845a de7981a 450bd2c d18abca 450bd2c d18abca 9f04bd1 d18abca 9f04bd1 450bd2c b7d6c4c d18130c dfc461b b7d6c4c 7718032 1f1480d 0b066f5 3e7eefe 0b066f5 3e7eefe dfc461b 3e7eefe 4bc845a 3e7eefe dfc461b 3e7eefe 4bc845a 3e7eefe 7718032 b7d6c4c 6db627d 7718032 4bc845a dfc461b 4bc845a dfc461b 3e7eefe 4bc845a dfc461b 4bc845a cdb7851 4bc845a de7981a 0f45386 4bc845a ab9867e 4bc845a de7981a 4bc845a 3e7eefe 7718032 ab9867e bc95dd0 849fe7e 1f1480d 0b10fd7 1f1480d 0b10fd7 5178b9b bc95dd0 3e7eefe bc95dd0 3e7eefe bc95dd0 3e7eefe de7981a 4bc845a 3e7eefe bc95dd0 d18abca 6bad35a 7718032 4b738f1 3e7eefe 7718032 4b738f1 de7981a 4b738f1 7718032 4b738f1 3ca7acb 4b738f1 de7981a 9559379 d18130c fb9f3d8 fc12a7e 3e7eefe de7981a 3e7eefe 3ca7acb 3e7eefe de7981a 3e7eefe de7981a 3e7eefe de7981a 3e7eefe 4bc845a fc69002 4bc845a 3e7eefe fc69002 de7981a 4b738f1 da32096 3e7eefe de7981a 0b066f5 3e7eefe 7718032 9655f41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import gradio as gr
import tempfile
import os
hf_token = os.environ.get('HF_TOKEN')
lpmc_client = gr.load("seungheondoh/LP-Music-Caps-demo", src="spaces")
from gradio_client import Client
client = Client("https://fffiloni-test-llama-api-debug.hf.space/", hf_token=hf_token)
lyrics_client = Client("https://fffiloni-music-to-lyrics.hf.space/")
visualizer_client = Client("https://fffiloni-animated-audio-visualizer-1024.hf.space/", hf_token=hf_token)
from share_btn import community_icon_html, loading_icon_html, share_js
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
import torch
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16")
pipe.to("cuda")
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
#pipe.enable_model_cpu_offload()
# if using torch < 2.0
# pipe.enable_xformers_memory_efficient_attention()
from pydub import AudioSegment
import yt_dlp as youtube_dl
from moviepy.editor import VideoFileClip
YT_LENGTH_LIMIT_S = 480 # limit to 1 hour YouTube files
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def convert_to_mp3(input_path, output_path):
try:
video_clip = VideoFileClip(input_path)
audio_clip = video_clip.audio
print("Converting to MP3...")
audio_clip.write_audiofile(output_path)
except Exception as e:
print("Error:", e)
def load_youtube_audio(yt_link):
gr.Info("Loading your YouTube link ... ")
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_link, filepath)
mp3_output_path = "video_sound.mp3"
convert_to_mp3(filepath, mp3_output_path)
print("Conversion complete. MP3 saved at:", mp3_output_path)
return mp3_output_path
def cut_audio(input_path, output_path, max_duration):
audio = AudioSegment.from_file(input_path)
if len(audio) > max_duration:
audio = audio[:max_duration]
audio.export(output_path, format="mp3")
return output_path
def get_text_after_colon(input_text):
# Find the first occurrence of ":"
colon_index = input_text.find(":")
# Check if ":" exists in the input_text
if colon_index != -1:
# Extract the text after the colon
result_text = input_text[colon_index + 1:].strip()
return result_text
else:
# Return the original text if ":" is not found
return input_text
def solo_xd(prompt):
images = pipe(prompt=prompt).images[0]
return images
def get_visualizer_video(audio_in, image_in, song_title):
title = f"""{song_title.upper()}\nMusic-to-Image demo by @fffiloni | HuggingFace
"""
visualizer_video = visualizer_client.predict(
title, # str in 'title' Textbox component
audio_in, # str (filepath or URL to file) in 'audio_in' Audio component
image_in, # str (filepath or URL to image) in 'image_in' Image component
"my_music_to_image_awesome_video.mp4",
api_name="/predict"
)
return visualizer_video[0]
def infer(audio_file, has_lyrics):
print("NEW INFERENCE ...")
gr.Info('Truncating your audio to the first 30 seconds')
truncated_audio = cut_audio(audio_file, "trunc_audio.mp3", 30000)
processed_audio = truncated_audio
print("Calling LP Music Caps...")
gr.Info('Calling LP Music Caps...')
cap_result = lpmc_client(
truncated_audio, # str (filepath or URL to file) in 'audio_path' Audio component
api_name="predict"
)
print(f"MUSIC DESC: {cap_result}")
if has_lyrics == "Yes" :
print("""βββ
Getting Lyrics ...
Note: We only take the first minute of the song
""")
truncated_lyrics = cut_audio(audio_file, "trunc_lyrics.mp3", 60000)
gr.Info("Getting Lyrics ...")
lyrics_result = lyrics_client.predict(
truncated_lyrics, # str (filepath or URL to file) in 'Song input' Audio component
fn_index=0
)
print(f"LYRICS: {lyrics_result}")
llama_q = f"""
I'll give you a music description + the lyrics of the song.
Give me an image description that would fit well with the music description, reflecting the lyrics too.
Be creative, do not do list, just an image description as required. Try to think about human characters first.
Your image description must fit well for a stable diffusion prompt.
Here's the music description :
Β« {cap_result} Β»
And here are the lyrics :
Β« {lyrics_result} Β»
"""
elif has_lyrics == "No" :
llama_q = f"""
I'll give you a music description.
Give me an image description that would fit well with the music description.
Be creative, do not do list, just an image description as required. Try to think about human characters first.
Your image description must fit well for a stable diffusion prompt.
Here's the music description :
Β« {cap_result} Β»
"""
print("""βββ
Calling Llama2 ...
""")
gr.Info("Calling Llama2 ...")
result = client.predict(
llama_q, # str in 'Message' Textbox component
"M2I",
api_name="/predict"
)
result = get_text_after_colon(result)
print(f"Llama2 result: {result}")
#gr.Info("Prompt Optimization ...")
#get_shorter_prompt = f"""
#From this image description, please provide a short but efficient summary for a good Stable Diffusion prompt:
#'{result}'
#"""
#shorten = client.predict(
# get_shorter_prompt, # str in 'Message' Textbox component
# api_name="/predict"
#)
#print(f'SHORTEN PROMPT: {shorten}')
# βββ
print("""βββ
Calling SD-XL ...
""")
gr.Info('Calling SD-XL ...')
prompt = result
conditioning, pooled = compel(prompt)
images = pipe(prompt_embeds=conditioning, pooled_prompt_embeds=pooled).images[0]
print("Finished")
#return cap_result, result, images
return processed_audio, images, result, gr.update(visible=True), gr.Group.update(visible=True)
css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 13rem;
}
div#share-btn-container > div {
flex-direction: row;
background: black;
align-items: center;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Music To Image
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Sends an audio into <a href="https://huggingface.co/spaces/seungheondoh/LP-Music-Caps-demo" target="_blank">LP-Music-Caps</a>
to generate a audio caption which is then translated to an illustrative image description with Llama2, and finally run through
Stable Diffusion XL to generate an image from the audio ! <br /><br />
Note: Only the first 30 seconds of your audio will be used for inference.
</p>
</div>""")
audio_input = gr.Audio(label="Music input", type="filepath", source="upload")
with gr.Row():
youtube_link = gr.Textbox(show_label=False, placeholder="TEMPORARILY DISABLED β’ you can also paste YT link and load it", interactive=False)
yt_load_btn = gr.Button("Load YT song", interactive=False)
with gr.Row():
has_lyrics = gr.Radio(label="Does your audio has lyrics ?", choices=["Yes", "No"], value="No", info="If yes, the image should reflect the lyrics, but be aware that because we add a step (getting lyrics), inference will take more time.")
song_title = gr.Textbox(label="Song Title", placeholder="Title: ", interactive=True, info="If you want to share your result, please provide the title of your audio sample :)", elem_id="song-title")
infer_btn = gr.Button("Generate Image from Music")
#lpmc_cap = gr.Textbox(label="Lp Music Caps caption")
with gr.Group():
with gr.Row():
llama_trans_cap = gr.Textbox(label="Llama Image Suggestion", placeholder="Llama2 image prompt suggestion will be displayed here ;)", visible=True, lines=12, max_lines=18, elem_id="llama-prompt")
with gr.Tab("Image Result"):
img_result = gr.Image(label="Image Result", elem_id="image-out", interactive=False, type="filepath")
with gr.Tab("Video visualizer"):
with gr.Column():
processed_audio = gr.Audio(type="filepath", visible=False)
visualizer_video = gr.Video(label="Video visualizer output")
get_visualizer_vid = gr.Button("Export as video !")
with gr.Row():
tryagain_btn = gr.Button("Try another image ?", visible=False)
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
gr.Examples(examples=[["./examples/electronic.mp3", "No"],["./examples/folk.wav", "No"], ["./examples/orchestra.wav", "No"]],
fn=infer,
inputs=[audio_input, has_lyrics],
outputs=[processed_audio, img_result, llama_trans_cap, tryagain_btn, share_group],
cache_examples=True
)
gr.HTML("""
<div class="footer">
<p>
Music to Image Demo by π€ <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a>
</p>
</div>
<div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;">
<p style="font-size: 0.8em;margin-bottom: 4px;">You may also like: </p>
<div id="may-like" style="display:flex; align-items:center; justify-content: center;height:20px;">
<svg height="20" width="182" style="margin-left:4px">
<a href="https://huggingface.co/spaces/fffiloni/Music-To-Zeroscope" target="_blank">
<image href="https://img.shields.io/badge/π€ Spaces-Music To Zeroscope-blue" src="https://img.shields.io/badge/π€ Spaces-Music To Zeroscope-blue.png" height="20"/>
</a>
</svg>
</div>
</div>
""")
#infer_btn.click(fn=infer, inputs=[audio_input], outputs=[lpmc_cap, llama_trans_cap, img_result])
yt_load_btn.click(fn=load_youtube_audio, inputs=[youtube_link], outputs=[audio_input], queue=False, api_name=False)
infer_btn.click(fn=infer, inputs=[audio_input, has_lyrics], outputs=[processed_audio, img_result, llama_trans_cap, tryagain_btn, share_group])
share_button.click(None, [], [], _js=share_js)
tryagain_btn.click(fn=solo_xd, inputs=[llama_trans_cap], outputs=[img_result])
get_visualizer_vid.click(fn=get_visualizer_video, inputs=[processed_audio, img_result, song_title], outputs=[visualizer_video], queue=False)
demo.queue(api_open=False, max_size=20).launch() |