File size: 14,203 Bytes
6e14436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright (c) Facebook, Inc. and its affiliates.
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import os

COLORS = ((np.random.rand(1300, 3) * 0.4 + 0.6) * 255).astype(
  np.uint8).reshape(1300, 1, 1, 3)

def _get_color_image(heatmap):
  heatmap = heatmap.reshape(
    heatmap.shape[0], heatmap.shape[1], heatmap.shape[2], 1)
  if heatmap.shape[0] == 1:
      color_map = (heatmap * np.ones((1, 1, 1, 3), np.uint8) * 255).max(
          axis=0).astype(np.uint8) # H, W, 3
  else:
      color_map = (heatmap * COLORS[:heatmap.shape[0]]).max(axis=0).astype(np.uint8) # H, W, 3

  return color_map

def _blend_image(image, color_map, a=0.7):
  color_map = cv2.resize(color_map, (image.shape[1], image.shape[0]))
  ret = np.clip(image * (1 - a) + color_map * a, 0, 255).astype(np.uint8)
  return ret

def _blend_image_heatmaps(image, color_maps, a=0.7):
    merges = np.zeros((image.shape[0], image.shape[1], 3), np.float32)
    for color_map in color_maps:
        color_map = cv2.resize(color_map, (image.shape[1], image.shape[0]))
        merges = np.maximum(merges, color_map)
    ret = np.clip(image * (1 - a) + merges * a, 0, 255).astype(np.uint8)
    return ret

def _decompose_level(x, shapes_per_level, N):
    '''
    x: LNHiWi x C
    '''
    x = x.view(x.shape[0], -1)
    ret = []
    st = 0
    for l in range(len(shapes_per_level)):
        ret.append([])
        h = shapes_per_level[l][0].int().item()
        w = shapes_per_level[l][1].int().item()
        for i in range(N):
            ret[l].append(x[st + h * w * i:st + h * w * (i + 1)].view(
                h, w, -1).permute(2, 0, 1))
        st += h * w * N
    return ret

def _imagelist_to_tensor(images):
    images = [x for x in images]
    image_sizes = [x.shape[-2:] for x in images]
    h = max([size[0] for size in image_sizes])
    w = max([size[1] for size in image_sizes])
    S = 32
    h, w = ((h - 1) // S + 1) * S, ((w - 1) // S + 1) * S
    images = [F.pad(x, (0, w - x.shape[2], 0, h - x.shape[1], 0, 0)) \
        for x in images]
    images = torch.stack(images)
    return images


def _ind2il(ind, shapes_per_level, N):
    r = ind
    l = 0
    S = 0
    while r - S >= N * shapes_per_level[l][0] * shapes_per_level[l][1]:
        S += N * shapes_per_level[l][0] * shapes_per_level[l][1]
        l += 1
    i = (r - S) // (shapes_per_level[l][0] * shapes_per_level[l][1])
    return i, l

def debug_train(
    images, gt_instances, flattened_hms, reg_targets, labels, pos_inds,
    shapes_per_level, locations, strides):
    '''
    images: N x 3 x H x W
    flattened_hms: LNHiWi x C
    shapes_per_level: L x 2 [(H_i, W_i)]
    locations: LNHiWi x 2
    '''
    reg_inds = torch.nonzero(
        reg_targets.max(dim=1)[0] > 0).squeeze(1)
    N = len(images)
    images = _imagelist_to_tensor(images)
    repeated_locations = [torch.cat([loc] * N, dim=0) \
        for loc in locations]
    locations = torch.cat(repeated_locations, dim=0)
    gt_hms = _decompose_level(flattened_hms, shapes_per_level, N)
    masks = flattened_hms.new_zeros((flattened_hms.shape[0], 1))
    masks[pos_inds] = 1
    masks = _decompose_level(masks, shapes_per_level, N)
    for i in range(len(images)):
        image = images[i].detach().cpu().numpy().transpose(1, 2, 0)
        color_maps = []
        for l in range(len(gt_hms)):
            color_map = _get_color_image(
                gt_hms[l][i].detach().cpu().numpy())
            color_maps.append(color_map)
            cv2.imshow('gthm_{}'.format(l), color_map)
        blend = _blend_image_heatmaps(image.copy(), color_maps)
        if gt_instances is not None:
            bboxes = gt_instances[i].gt_boxes.tensor
            for j in range(len(bboxes)):
                bbox = bboxes[j]
                cv2.rectangle(
                    blend, 
                    (int(bbox[0]), int(bbox[1])),
                    (int(bbox[2]), int(bbox[3])),
                    (0, 0, 255), 3, cv2.LINE_AA)
    
        for j in range(len(pos_inds)):
            image_id, l = _ind2il(pos_inds[j], shapes_per_level, N)
            if image_id != i:
                continue
            loc = locations[pos_inds[j]]
            cv2.drawMarker(
                blend, (int(loc[0]), int(loc[1])), (0, 255, 255),
                markerSize=(l + 1) * 16)
        
        for j in range(len(reg_inds)):
            image_id, l = _ind2il(reg_inds[j], shapes_per_level, N)
            if image_id != i:
                continue
            ltrb = reg_targets[reg_inds[j]]
            ltrb *= strides[l]
            loc = locations[reg_inds[j]]
            bbox = [(loc[0] - ltrb[0]), (loc[1] - ltrb[1]),
                    (loc[0] + ltrb[2]), (loc[1] + ltrb[3])]
            cv2.rectangle(
                blend, 
                (int(bbox[0]), int(bbox[1])),
                (int(bbox[2]), int(bbox[3])),
                (255, 0, 0), 1, cv2.LINE_AA)  
            cv2.circle(blend, (int(loc[0]), int(loc[1])), 2, (255, 0, 0), -1)

        cv2.imshow('blend', blend)
        cv2.waitKey()


def debug_test(
    images, logits_pred, reg_pred, agn_hm_pred=[], preds=[], 
    vis_thresh=0.3, debug_show_name=False, mult_agn=False):
    '''
    images: N x 3 x H x W
    class_target: LNHiWi x C
    cat_agn_heatmap: LNHiWi
    shapes_per_level: L x 2 [(H_i, W_i)]
    '''
    N = len(images)
    for i in range(len(images)):
        image = images[i].detach().cpu().numpy().transpose(1, 2, 0)
        result = image.copy().astype(np.uint8)
        pred_image = image.copy().astype(np.uint8)
        color_maps = []
        L = len(logits_pred)
        for l in range(L):
            if logits_pred[0] is not None:
                stride = min(image.shape[0], image.shape[1]) / min(
                    logits_pred[l][i].shape[1], logits_pred[l][i].shape[2])
            else:
                stride = min(image.shape[0], image.shape[1]) / min(
                    agn_hm_pred[l][i].shape[1], agn_hm_pred[l][i].shape[2])
            stride = stride if stride < 60 else 64 if stride < 100 else 128
            if logits_pred[0] is not None:
                if mult_agn:
                    logits_pred[l][i] = logits_pred[l][i] * agn_hm_pred[l][i]
                color_map = _get_color_image(
                    logits_pred[l][i].detach().cpu().numpy())
                color_maps.append(color_map)
                cv2.imshow('predhm_{}'.format(l), color_map)

            if debug_show_name:
                from detectron2.data.datasets.lvis_v1_categories import LVIS_CATEGORIES 
                cat2name = [x['name'] for x in LVIS_CATEGORIES]
            for j in range(len(preds[i].scores) if preds is not None else 0):
                if preds[i].scores[j] > vis_thresh:
                    bbox = preds[i].proposal_boxes[j] \
                        if preds[i].has('proposal_boxes') else \
                        preds[i].pred_boxes[j]
                    bbox = bbox.tensor[0].detach().cpu().numpy().astype(np.int32)
                    cat = int(preds[i].pred_classes[j]) \
                        if preds[i].has('pred_classes') else 0
                    cl = COLORS[cat, 0, 0]
                    cv2.rectangle(
                        pred_image, (int(bbox[0]), int(bbox[1])), 
                        (int(bbox[2]), int(bbox[3])), 
                        (int(cl[0]), int(cl[1]), int(cl[2])), 2, cv2.LINE_AA)
                    if debug_show_name:
                        txt = '{}{:.1f}'.format(
                            cat2name[cat] if cat > 0 else '', 
                            preds[i].scores[j])
                        font = cv2.FONT_HERSHEY_SIMPLEX
                        cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
                        cv2.rectangle(
                            pred_image,
                            (int(bbox[0]), int(bbox[1] - cat_size[1] - 2)),
                            (int(bbox[0] + cat_size[0]), int(bbox[1] - 2)), 
                            (int(cl[0]), int(cl[1]), int(cl[2])), -1)
                        cv2.putText(
                            pred_image, txt, (int(bbox[0]), int(bbox[1] - 2)), 
                            font, 0.5, (0, 0, 0), thickness=1, lineType=cv2.LINE_AA)


            if agn_hm_pred[l] is not None:
                agn_hm_ = agn_hm_pred[l][i, 0, :, :, None].detach().cpu().numpy()
                agn_hm_ = (agn_hm_ * np.array([255, 255, 255]).reshape(
                    1, 1, 3)).astype(np.uint8)
                cv2.imshow('agn_hm_{}'.format(l), agn_hm_)
        blend = _blend_image_heatmaps(image.copy(), color_maps)
        cv2.imshow('blend', blend)
        cv2.imshow('preds', pred_image)
        cv2.waitKey()

global cnt
cnt = 0

def debug_second_stage(images, instances, proposals=None, vis_thresh=0.3, 
    save_debug=False, debug_show_name=False, image_labels=[],
    save_debug_path='output/save_debug/',
    bgr=False):
    images = _imagelist_to_tensor(images)
    if 'COCO' in save_debug_path:
        from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
        cat2name = [x['name'] for x in COCO_CATEGORIES]
    else:
        from detectron2.data.datasets.lvis_v1_categories import LVIS_CATEGORIES
        cat2name = ['({}){}'.format(x['frequency'], x['name']) \
            for x in LVIS_CATEGORIES]
    for i in range(len(images)):
        image = images[i].detach().cpu().numpy().transpose(1, 2, 0).astype(np.uint8).copy()
        if bgr:
            image = image[:, :, ::-1].copy()
        if instances[i].has('gt_boxes'):
            bboxes = instances[i].gt_boxes.tensor.cpu().numpy()
            scores = np.ones(bboxes.shape[0])
            cats = instances[i].gt_classes.cpu().numpy()
        else:
            bboxes = instances[i].pred_boxes.tensor.cpu().numpy()
            scores = instances[i].scores.cpu().numpy()
            cats = instances[i].pred_classes.cpu().numpy()
        for j in range(len(bboxes)):
            if scores[j] > vis_thresh:
                bbox = bboxes[j]
                cl = COLORS[cats[j], 0, 0]
                cl = (int(cl[0]), int(cl[1]), int(cl[2]))
                cv2.rectangle(
                    image, 
                    (int(bbox[0]), int(bbox[1])),
                    (int(bbox[2]), int(bbox[3])),
                    cl, 2, cv2.LINE_AA)
                if debug_show_name:
                    cat = cats[j]
                    txt = '{}{:.1f}'.format(
                        cat2name[cat] if cat > 0 else '', 
                        scores[j])
                    font = cv2.FONT_HERSHEY_SIMPLEX
                    cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
                    cv2.rectangle(
                        image,
                        (int(bbox[0]), int(bbox[1] - cat_size[1] - 2)),
                        (int(bbox[0] + cat_size[0]), int(bbox[1] - 2)), 
                        (int(cl[0]), int(cl[1]), int(cl[2])), -1)
                    cv2.putText(
                        image, txt, (int(bbox[0]), int(bbox[1] - 2)), 
                        font, 0.5, (0, 0, 0), thickness=1, lineType=cv2.LINE_AA)
        if proposals is not None:
            proposal_image = images[i].detach().cpu().numpy().transpose(1, 2, 0).astype(np.uint8).copy()
            if bgr:
                proposal_image = proposal_image.copy()
            else:
                proposal_image = proposal_image[:, :, ::-1].copy()
            bboxes = proposals[i].proposal_boxes.tensor.cpu().numpy()
            if proposals[i].has('scores'):
                scores = proposals[i].scores.detach().cpu().numpy()
            else:
                scores = proposals[i].objectness_logits.detach().cpu().numpy()
            # selected = -1
            # if proposals[i].has('image_loss'):
            #     selected = proposals[i].image_loss.argmin()
            if proposals[i].has('selected'):
                selected = proposals[i].selected
            else:
                selected = [-1 for _ in range(len(bboxes))]
            for j in range(len(bboxes)):
                if scores[j] > vis_thresh or selected[j] >= 0:
                    bbox = bboxes[j]
                    cl = (209, 159, 83)
                    th = 2
                    if selected[j] >= 0:
                        cl = (0, 0, 0xa4)
                        th = 4
                    cv2.rectangle(
                        proposal_image, 
                        (int(bbox[0]), int(bbox[1])),
                        (int(bbox[2]), int(bbox[3])),
                        cl, th, cv2.LINE_AA)
                    if selected[j] >= 0 and debug_show_name:
                        cat = selected[j].item()
                        txt = '{}'.format(cat2name[cat])
                        font = cv2.FONT_HERSHEY_SIMPLEX
                        cat_size = cv2.getTextSize(txt, font, 0.5, 2)[0]
                        cv2.rectangle(
                            proposal_image,
                            (int(bbox[0]), int(bbox[1] - cat_size[1] - 2)),
                            (int(bbox[0] + cat_size[0]), int(bbox[1] - 2)), 
                            (int(cl[0]), int(cl[1]), int(cl[2])), -1)
                        cv2.putText(
                            proposal_image, txt, 
                            (int(bbox[0]), int(bbox[1] - 2)), 
                            font, 0.5, (0, 0, 0), thickness=1, 
                            lineType=cv2.LINE_AA)

        if save_debug:
            global cnt
            cnt = (cnt + 1) % 5000
            if not os.path.exists(save_debug_path):
                os.mkdir(save_debug_path)
            save_name = '{}/{:05d}.jpg'.format(save_debug_path, cnt)
            if i < len(image_labels):
                image_label = image_labels[i]
                save_name = '{}/{:05d}'.format(save_debug_path, cnt)
                for x in image_label:
                    class_name = cat2name[x]
                    save_name = save_name + '|{}'.format(class_name)
                save_name = save_name + '.jpg'
            cv2.imwrite(save_name, proposal_image)
        else:
            cv2.imshow('image', image)
            if proposals is not None:
                cv2.imshow('proposals', proposal_image)
            cv2.waitKey()