Spaces:
Paused
Paused
File size: 23,940 Bytes
6e14436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import math
import json
import numpy as np
from typing import Dict, Union
import torch
from fvcore.nn import giou_loss, smooth_l1_loss
from torch import nn
from torch.nn import functional as F
import fvcore.nn.weight_init as weight_init
import detectron2.utils.comm as comm
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple
from detectron2.structures import Boxes, Instances
from detectron2.utils.events import get_event_storage
from detectron2.modeling.box_regression import Box2BoxTransform
from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers
from detectron2.modeling.roi_heads.fast_rcnn import fast_rcnn_inference
from detectron2.modeling.roi_heads.fast_rcnn import _log_classification_stats
from torch.cuda.amp import autocast
from ..utils import load_class_freq, get_fed_loss_inds
from .zero_shot_classifier import ZeroShotClassifier
__all__ = ["DeticFastRCNNOutputLayers"]
class DeticFastRCNNOutputLayers(FastRCNNOutputLayers):
@configurable
def __init__(
self,
input_shape: ShapeSpec,
*,
mult_proposal_score=False,
cls_score=None,
sync_caption_batch = False,
use_sigmoid_ce = False,
use_fed_loss = False,
ignore_zero_cats = False,
fed_loss_num_cat = 50,
dynamic_classifier = False,
image_label_loss = '',
use_zeroshot_cls = False,
image_loss_weight = 0.1,
with_softmax_prop = False,
caption_weight = 1.0,
neg_cap_weight = 1.0,
add_image_box = False,
debug = False,
prior_prob = 0.01,
cat_freq_path = '',
fed_loss_freq_weight = 0.5,
softmax_weak_loss = False,
**kwargs,
):
super().__init__(
input_shape=input_shape,
**kwargs,
)
self.mult_proposal_score = mult_proposal_score
self.sync_caption_batch = sync_caption_batch
self.use_sigmoid_ce = use_sigmoid_ce
self.use_fed_loss = use_fed_loss
self.ignore_zero_cats = ignore_zero_cats
self.fed_loss_num_cat = fed_loss_num_cat
self.dynamic_classifier = dynamic_classifier
self.image_label_loss = image_label_loss
self.use_zeroshot_cls = use_zeroshot_cls
self.image_loss_weight = image_loss_weight
self.with_softmax_prop = with_softmax_prop
self.caption_weight = caption_weight
self.neg_cap_weight = neg_cap_weight
self.add_image_box = add_image_box
self.softmax_weak_loss = softmax_weak_loss
self.debug = debug
if softmax_weak_loss:
assert image_label_loss in ['max_size']
if self.use_sigmoid_ce:
bias_value = -math.log((1 - prior_prob) / prior_prob)
nn.init.constant_(self.cls_score.bias, bias_value)
if self.use_fed_loss or self.ignore_zero_cats:
freq_weight = load_class_freq(cat_freq_path, fed_loss_freq_weight)
self.register_buffer('freq_weight', freq_weight)
else:
self.freq_weight = None
if self.use_fed_loss and len(self.freq_weight) < self.num_classes:
# assert self.num_classes == 11493
print('Extending federated loss weight')
self.freq_weight = torch.cat(
[self.freq_weight,
self.freq_weight.new_zeros(
self.num_classes - len(self.freq_weight))]
)
assert (not self.dynamic_classifier) or (not self.use_fed_loss)
input_size = input_shape.channels * \
(input_shape.width or 1) * (input_shape.height or 1)
if self.use_zeroshot_cls:
del self.cls_score
del self.bbox_pred
assert cls_score is not None
self.cls_score = cls_score
self.bbox_pred = nn.Sequential(
nn.Linear(input_size, input_size),
nn.ReLU(inplace=True),
nn.Linear(input_size, 4)
)
weight_init.c2_xavier_fill(self.bbox_pred[0])
nn.init.normal_(self.bbox_pred[-1].weight, std=0.001)
nn.init.constant_(self.bbox_pred[-1].bias, 0)
if self.with_softmax_prop:
self.prop_score = nn.Sequential(
nn.Linear(input_size, input_size),
nn.ReLU(inplace=True),
nn.Linear(input_size, self.num_classes + 1),
)
weight_init.c2_xavier_fill(self.prop_score[0])
nn.init.normal_(self.prop_score[-1].weight, mean=0, std=0.001)
nn.init.constant_(self.prop_score[-1].bias, 0)
@classmethod
def from_config(cls, cfg, input_shape):
ret = super().from_config(cfg, input_shape)
ret.update({
'mult_proposal_score': cfg.MODEL.ROI_BOX_HEAD.MULT_PROPOSAL_SCORE,
'sync_caption_batch': cfg.MODEL.SYNC_CAPTION_BATCH,
'use_sigmoid_ce': cfg.MODEL.ROI_BOX_HEAD.USE_SIGMOID_CE,
'use_fed_loss': cfg.MODEL.ROI_BOX_HEAD.USE_FED_LOSS,
'ignore_zero_cats': cfg.MODEL.ROI_BOX_HEAD.IGNORE_ZERO_CATS,
'fed_loss_num_cat': cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_NUM_CAT,
'dynamic_classifier': cfg.MODEL.DYNAMIC_CLASSIFIER,
'image_label_loss': cfg.MODEL.ROI_BOX_HEAD.IMAGE_LABEL_LOSS,
'use_zeroshot_cls': cfg.MODEL.ROI_BOX_HEAD.USE_ZEROSHOT_CLS,
'image_loss_weight': cfg.MODEL.ROI_BOX_HEAD.IMAGE_LOSS_WEIGHT,
'with_softmax_prop': cfg.MODEL.ROI_BOX_HEAD.WITH_SOFTMAX_PROP,
'caption_weight': cfg.MODEL.ROI_BOX_HEAD.CAPTION_WEIGHT,
'neg_cap_weight': cfg.MODEL.ROI_BOX_HEAD.NEG_CAP_WEIGHT,
'add_image_box': cfg.MODEL.ROI_BOX_HEAD.ADD_IMAGE_BOX,
'debug': cfg.DEBUG or cfg.SAVE_DEBUG or cfg.IS_DEBUG,
'prior_prob': cfg.MODEL.ROI_BOX_HEAD.PRIOR_PROB,
'cat_freq_path': cfg.MODEL.ROI_BOX_HEAD.CAT_FREQ_PATH,
'fed_loss_freq_weight': cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_FREQ_WEIGHT,
'softmax_weak_loss': cfg.MODEL.ROI_BOX_HEAD.SOFTMAX_WEAK_LOSS,
})
if ret['use_zeroshot_cls']:
ret['cls_score'] = ZeroShotClassifier(cfg, input_shape)
return ret
def losses(self, predictions, proposals, \
use_advanced_loss=True,
classifier_info=(None,None,None)):
"""
enable advanced loss
"""
scores, proposal_deltas = predictions
gt_classes = (
cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0)
)
num_classes = self.num_classes
if self.dynamic_classifier:
_, cls_id_map = classifier_info[1]
gt_classes = cls_id_map[gt_classes]
num_classes = scores.shape[1] - 1
assert cls_id_map[self.num_classes] == num_classes
_log_classification_stats(scores, gt_classes)
if len(proposals):
proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) # Nx4
assert not proposal_boxes.requires_grad, "Proposals should not require gradients!"
gt_boxes = cat(
[(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals],
dim=0,
)
else:
proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device)
if self.use_sigmoid_ce:
loss_cls = self.sigmoid_cross_entropy_loss(scores, gt_classes)
else:
loss_cls = self.softmax_cross_entropy_loss(scores, gt_classes)
return {
"loss_cls": loss_cls,
"loss_box_reg": self.box_reg_loss(
proposal_boxes, gt_boxes, proposal_deltas, gt_classes,
num_classes=num_classes)
}
def sigmoid_cross_entropy_loss(self, pred_class_logits, gt_classes):
if pred_class_logits.numel() == 0:
return pred_class_logits.new_zeros([1])[0] # This is more robust than .sum() * 0.
B = pred_class_logits.shape[0]
C = pred_class_logits.shape[1] - 1
target = pred_class_logits.new_zeros(B, C + 1)
target[range(len(gt_classes)), gt_classes] = 1 # B x (C + 1)
target = target[:, :C] # B x C
weight = 1
if self.use_fed_loss and (self.freq_weight is not None): # fedloss
appeared = get_fed_loss_inds(
gt_classes,
num_sample_cats=self.fed_loss_num_cat,
C=C,
weight=self.freq_weight)
appeared_mask = appeared.new_zeros(C + 1)
appeared_mask[appeared] = 1 # C + 1
appeared_mask = appeared_mask[:C]
fed_w = appeared_mask.view(1, C).expand(B, C)
weight = weight * fed_w.float()
if self.ignore_zero_cats and (self.freq_weight is not None):
w = (self.freq_weight.view(-1) > 1e-4).float()
weight = weight * w.view(1, C).expand(B, C)
# import pdb; pdb.set_trace()
cls_loss = F.binary_cross_entropy_with_logits(
pred_class_logits[:, :-1], target, reduction='none') # B x C
loss = torch.sum(cls_loss * weight) / B
return loss
def softmax_cross_entropy_loss(self, pred_class_logits, gt_classes):
"""
change _no_instance handling
"""
if pred_class_logits.numel() == 0:
return pred_class_logits.new_zeros([1])[0]
if self.ignore_zero_cats and (self.freq_weight is not None):
zero_weight = torch.cat([
(self.freq_weight.view(-1) > 1e-4).float(),
self.freq_weight.new_ones(1)]) # C + 1
loss = F.cross_entropy(
pred_class_logits, gt_classes,
weight=zero_weight, reduction="mean")
elif self.use_fed_loss and (self.freq_weight is not None): # fedloss
C = pred_class_logits.shape[1] - 1
appeared = get_fed_loss_inds(
gt_classes,
num_sample_cats=self.fed_loss_num_cat,
C=C,
weight=self.freq_weight)
appeared_mask = appeared.new_zeros(C + 1).float()
appeared_mask[appeared] = 1. # C + 1
appeared_mask[C] = 1.
loss = F.cross_entropy(
pred_class_logits, gt_classes,
weight=appeared_mask, reduction="mean")
else:
loss = F.cross_entropy(
pred_class_logits, gt_classes, reduction="mean")
return loss
def box_reg_loss(
self, proposal_boxes, gt_boxes, pred_deltas, gt_classes,
num_classes=-1):
"""
Allow custom background index
"""
num_classes = num_classes if num_classes > 0 else self.num_classes
box_dim = proposal_boxes.shape[1] # 4 or 5
fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < num_classes))[0]
if pred_deltas.shape[1] == box_dim: # cls-agnostic regression
fg_pred_deltas = pred_deltas[fg_inds]
else:
fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[
fg_inds, gt_classes[fg_inds]
]
if self.box_reg_loss_type == "smooth_l1":
gt_pred_deltas = self.box2box_transform.get_deltas(
proposal_boxes[fg_inds],
gt_boxes[fg_inds],
)
loss_box_reg = smooth_l1_loss(
fg_pred_deltas, gt_pred_deltas, self.smooth_l1_beta, reduction="sum"
)
elif self.box_reg_loss_type == "giou":
fg_pred_boxes = self.box2box_transform.apply_deltas(
fg_pred_deltas, proposal_boxes[fg_inds]
)
loss_box_reg = giou_loss(fg_pred_boxes, gt_boxes[fg_inds], reduction="sum")
else:
raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")
return loss_box_reg / max(gt_classes.numel(), 1.0)
def inference(self, predictions, proposals):
"""
enable use proposal boxes
"""
predictions = (predictions[0], predictions[1])
boxes = self.predict_boxes(predictions, proposals)
scores = self.predict_probs(predictions, proposals)
if self.mult_proposal_score:
proposal_scores = [p.get('objectness_logits') for p in proposals]
scores = [(s * ps[:, None]) ** 0.5 \
for s, ps in zip(scores, proposal_scores)]
image_shapes = [x.image_size for x in proposals]
return fast_rcnn_inference(
boxes,
scores,
image_shapes,
self.test_score_thresh,
self.test_nms_thresh,
self.test_topk_per_image,
)
def predict_probs(self, predictions, proposals):
"""
support sigmoid
"""
# scores, _ = predictions
scores = predictions[0]
num_inst_per_image = [len(p) for p in proposals]
if self.use_sigmoid_ce:
probs = scores.sigmoid()
else:
probs = F.softmax(scores, dim=-1)
return probs.split(num_inst_per_image, dim=0)
def image_label_losses(self, predictions, proposals, image_labels, \
classifier_info=(None,None,None), ann_type='image'):
'''
Inputs:
scores: N x (C + 1)
image_labels B x 1
'''
num_inst_per_image = [len(p) for p in proposals]
scores = predictions[0]
scores = scores.split(num_inst_per_image, dim=0) # B x n x (C + 1)
if self.with_softmax_prop:
prop_scores = predictions[2].split(num_inst_per_image, dim=0)
else:
prop_scores = [None for _ in num_inst_per_image]
B = len(scores)
img_box_count = 0
select_size_count = 0
select_x_count = 0
select_y_count = 0
max_score_count = 0
storage = get_event_storage()
loss = scores[0].new_zeros([1])[0]
caption_loss = scores[0].new_zeros([1])[0]
for idx, (score, labels, prop_score, p) in enumerate(zip(
scores, image_labels, prop_scores, proposals)):
if score.shape[0] == 0:
loss += score.new_zeros([1])[0]
continue
if 'caption' in ann_type:
score, caption_loss_img = self._caption_loss(
score, classifier_info, idx, B)
caption_loss += self.caption_weight * caption_loss_img
if ann_type == 'caption':
continue
if self.debug:
p.selected = score.new_zeros(
(len(p),), dtype=torch.long) - 1
for i_l, label in enumerate(labels):
if self.dynamic_classifier:
if idx == 0 and i_l == 0 and comm.is_main_process():
storage.put_scalar('stats_label', label)
label = classifier_info[1][1][label]
assert label < score.shape[1]
if self.image_label_loss in ['wsod', 'wsddn']:
loss_i, ind = self._wsddn_loss(score, prop_score, label)
elif self.image_label_loss == 'max_score':
loss_i, ind = self._max_score_loss(score, label)
elif self.image_label_loss == 'max_size':
loss_i, ind = self._max_size_loss(score, label, p)
elif self.image_label_loss == 'first':
loss_i, ind = self._first_loss(score, label)
elif self.image_label_loss == 'image':
loss_i, ind = self._image_loss(score, label)
elif self.image_label_loss == 'min_loss':
loss_i, ind = self._min_loss_loss(score, label)
else:
assert 0
loss += loss_i / len(labels)
if type(ind) == type([]):
img_box_count = sum(ind) / len(ind)
if self.debug:
for ind_i in ind:
p.selected[ind_i] = label
else:
img_box_count = ind
select_size_count = p[ind].proposal_boxes.area() / \
(p.image_size[0] * p.image_size[1])
max_score_count = score[ind, label].sigmoid()
select_x_count = (p.proposal_boxes.tensor[ind, 0] + \
p.proposal_boxes.tensor[ind, 2]) / 2 / p.image_size[1]
select_y_count = (p.proposal_boxes.tensor[ind, 1] + \
p.proposal_boxes.tensor[ind, 3]) / 2 / p.image_size[0]
if self.debug:
p.selected[ind] = label
loss = loss / B
storage.put_scalar('stats_l_image', loss.item())
if 'caption' in ann_type:
caption_loss = caption_loss / B
loss = loss + caption_loss
storage.put_scalar('stats_l_caption', caption_loss.item())
if comm.is_main_process():
storage.put_scalar('pool_stats', img_box_count)
storage.put_scalar('stats_select_size', select_size_count)
storage.put_scalar('stats_select_x', select_x_count)
storage.put_scalar('stats_select_y', select_y_count)
storage.put_scalar('stats_max_label_score', max_score_count)
return {
'image_loss': loss * self.image_loss_weight,
'loss_cls': score.new_zeros([1])[0],
'loss_box_reg': score.new_zeros([1])[0]}
def forward(self, x, classifier_info=(None,None,None)):
"""
enable classifier_info
"""
if x.dim() > 2:
x = torch.flatten(x, start_dim=1)
scores = []
if classifier_info[0] is not None:
cls_scores = self.cls_score(x, classifier=classifier_info[0])
scores.append(cls_scores)
else:
cls_scores = self.cls_score(x)
scores.append(cls_scores)
if classifier_info[2] is not None:
cap_cls = classifier_info[2]
if self.sync_caption_batch:
caption_scores = self.cls_score(x, classifier=cap_cls[:, :-1])
else:
caption_scores = self.cls_score(x, classifier=cap_cls)
scores.append(caption_scores)
scores = torch.cat(scores, dim=1) # B x C' or B x N or B x (C'+N)
proposal_deltas = self.bbox_pred(x)
if self.with_softmax_prop:
prop_score = self.prop_score(x)
return scores, proposal_deltas, prop_score
else:
return scores, proposal_deltas
def _caption_loss(self, score, classifier_info, idx, B):
assert (classifier_info[2] is not None)
assert self.add_image_box
cls_and_cap_num = score.shape[1]
cap_num = classifier_info[2].shape[0]
score, caption_score = score.split(
[cls_and_cap_num - cap_num, cap_num], dim=1)
# n x (C + 1), n x B
caption_score = caption_score[-1:] # 1 x B # -1: image level box
caption_target = caption_score.new_zeros(
caption_score.shape) # 1 x B or 1 x MB, M: num machines
if self.sync_caption_batch:
# caption_target: 1 x MB
rank = comm.get_rank()
global_idx = B * rank + idx
assert (classifier_info[2][
global_idx, -1] - rank) ** 2 < 1e-8, \
'{} {} {} {} {}'.format(
rank, global_idx,
classifier_info[2][global_idx, -1],
classifier_info[2].shape,
classifier_info[2][:, -1])
caption_target[:, global_idx] = 1.
else:
assert caption_score.shape[1] == B
caption_target[:, idx] = 1.
caption_loss_img = F.binary_cross_entropy_with_logits(
caption_score, caption_target, reduction='none')
if self.sync_caption_batch:
fg_mask = (caption_target > 0.5).float()
assert (fg_mask.sum().item() - 1.) ** 2 < 1e-8, '{} {}'.format(
fg_mask.shape, fg_mask)
pos_loss = (caption_loss_img * fg_mask).sum()
neg_loss = (caption_loss_img * (1. - fg_mask)).sum()
caption_loss_img = pos_loss + self.neg_cap_weight * neg_loss
else:
caption_loss_img = caption_loss_img.sum()
return score, caption_loss_img
def _wsddn_loss(self, score, prop_score, label):
assert prop_score is not None
loss = 0
final_score = score.sigmoid() * \
F.softmax(prop_score, dim=0) # B x (C + 1)
img_score = torch.clamp(
torch.sum(final_score, dim=0),
min=1e-10, max=1-1e-10) # (C + 1)
target = img_score.new_zeros(img_score.shape) # (C + 1)
target[label] = 1.
loss += F.binary_cross_entropy(img_score, target)
ind = final_score[:, label].argmax()
return loss, ind
def _max_score_loss(self, score, label):
loss = 0
target = score.new_zeros(score.shape[1])
target[label] = 1.
ind = score[:, label].argmax().item()
loss += F.binary_cross_entropy_with_logits(
score[ind], target, reduction='sum')
return loss, ind
def _min_loss_loss(self, score, label):
loss = 0
target = score.new_zeros(score.shape)
target[:, label] = 1.
with torch.no_grad():
x = F.binary_cross_entropy_with_logits(
score, target, reduction='none').sum(dim=1) # n
ind = x.argmin().item()
loss += F.binary_cross_entropy_with_logits(
score[ind], target[0], reduction='sum')
return loss, ind
def _first_loss(self, score, label):
loss = 0
target = score.new_zeros(score.shape[1])
target[label] = 1.
ind = 0
loss += F.binary_cross_entropy_with_logits(
score[ind], target, reduction='sum')
return loss, ind
def _image_loss(self, score, label):
assert self.add_image_box
target = score.new_zeros(score.shape[1])
target[label] = 1.
ind = score.shape[0] - 1
loss = F.binary_cross_entropy_with_logits(
score[ind], target, reduction='sum')
return loss, ind
def _max_size_loss(self, score, label, p):
loss = 0
target = score.new_zeros(score.shape[1])
target[label] = 1.
sizes = p.proposal_boxes.area()
ind = sizes[:-1].argmax().item() if len(sizes) > 1 else 0
if self.softmax_weak_loss:
loss += F.cross_entropy(
score[ind:ind+1],
score.new_tensor(label, dtype=torch.long).view(1),
reduction='sum')
else:
loss += F.binary_cross_entropy_with_logits(
score[ind], target, reduction='sum')
return loss, ind
def put_label_distribution(storage, hist_name, hist_counts, num_classes):
"""
"""
ht_min, ht_max = 0, num_classes
hist_edges = torch.linspace(
start=ht_min, end=ht_max, steps=num_classes + 1, dtype=torch.float32)
hist_params = dict(
tag=hist_name,
min=ht_min,
max=ht_max,
num=float(hist_counts.sum()),
sum=float((hist_counts * torch.arange(len(hist_counts))).sum()),
sum_squares=float(((hist_counts * torch.arange(len(hist_counts))) ** 2).sum()),
bucket_limits=hist_edges[1:].tolist(),
bucket_counts=hist_counts.tolist(),
global_step=storage._iter,
)
storage._histograms.append(hist_params) |