File size: 23,940 Bytes
6e14436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import math
import json
import numpy as np
from typing import Dict, Union
import torch
from fvcore.nn import giou_loss, smooth_l1_loss
from torch import nn
from torch.nn import functional as F
import fvcore.nn.weight_init as weight_init
import detectron2.utils.comm as comm
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple
from detectron2.structures import Boxes, Instances
from detectron2.utils.events import get_event_storage
from detectron2.modeling.box_regression import Box2BoxTransform
from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers
from detectron2.modeling.roi_heads.fast_rcnn import fast_rcnn_inference
from detectron2.modeling.roi_heads.fast_rcnn import _log_classification_stats

from torch.cuda.amp import autocast
from ..utils import load_class_freq, get_fed_loss_inds
from .zero_shot_classifier import ZeroShotClassifier

__all__ = ["DeticFastRCNNOutputLayers"]


class DeticFastRCNNOutputLayers(FastRCNNOutputLayers):
    @configurable
    def __init__(
        self, 
        input_shape: ShapeSpec,
        *,
        mult_proposal_score=False,
        cls_score=None,
        sync_caption_batch = False,
        use_sigmoid_ce = False,
        use_fed_loss = False,
        ignore_zero_cats = False,
        fed_loss_num_cat = 50,
        dynamic_classifier = False,
        image_label_loss = '',
        use_zeroshot_cls = False,
        image_loss_weight = 0.1,
        with_softmax_prop = False,
        caption_weight = 1.0,
        neg_cap_weight = 1.0,
        add_image_box = False,
        debug = False,
        prior_prob = 0.01,
        cat_freq_path = '',
        fed_loss_freq_weight = 0.5,
        softmax_weak_loss = False,
        **kwargs,
    ):
        super().__init__(
            input_shape=input_shape, 
            **kwargs,
        )
        self.mult_proposal_score = mult_proposal_score
        self.sync_caption_batch = sync_caption_batch
        self.use_sigmoid_ce = use_sigmoid_ce
        self.use_fed_loss = use_fed_loss
        self.ignore_zero_cats = ignore_zero_cats
        self.fed_loss_num_cat = fed_loss_num_cat
        self.dynamic_classifier = dynamic_classifier
        self.image_label_loss = image_label_loss
        self.use_zeroshot_cls = use_zeroshot_cls
        self.image_loss_weight = image_loss_weight
        self.with_softmax_prop = with_softmax_prop
        self.caption_weight = caption_weight
        self.neg_cap_weight = neg_cap_weight
        self.add_image_box = add_image_box
        self.softmax_weak_loss = softmax_weak_loss
        self.debug = debug

        if softmax_weak_loss:
            assert image_label_loss in ['max_size'] 

        if self.use_sigmoid_ce:
            bias_value = -math.log((1 - prior_prob) / prior_prob)
            nn.init.constant_(self.cls_score.bias, bias_value)
        
        if self.use_fed_loss or self.ignore_zero_cats:
            freq_weight = load_class_freq(cat_freq_path, fed_loss_freq_weight)
            self.register_buffer('freq_weight', freq_weight)
        else:
            self.freq_weight = None

        if self.use_fed_loss and len(self.freq_weight) < self.num_classes:
            # assert self.num_classes == 11493
            print('Extending federated loss weight')
            self.freq_weight = torch.cat(
                [self.freq_weight, 
                self.freq_weight.new_zeros(
                    self.num_classes - len(self.freq_weight))]
            )

        assert (not self.dynamic_classifier) or (not self.use_fed_loss)
        input_size = input_shape.channels * \
            (input_shape.width or 1) * (input_shape.height or 1)
        
        if self.use_zeroshot_cls:
            del self.cls_score
            del self.bbox_pred
            assert cls_score is not None
            self.cls_score = cls_score
            self.bbox_pred = nn.Sequential(
                nn.Linear(input_size, input_size),
                nn.ReLU(inplace=True),
                nn.Linear(input_size, 4)
            )
            weight_init.c2_xavier_fill(self.bbox_pred[0])
            nn.init.normal_(self.bbox_pred[-1].weight, std=0.001)
            nn.init.constant_(self.bbox_pred[-1].bias, 0)

        if self.with_softmax_prop:
            self.prop_score = nn.Sequential(
                nn.Linear(input_size, input_size),
                nn.ReLU(inplace=True),
                nn.Linear(input_size, self.num_classes + 1),
            )
            weight_init.c2_xavier_fill(self.prop_score[0])
            nn.init.normal_(self.prop_score[-1].weight, mean=0, std=0.001)
            nn.init.constant_(self.prop_score[-1].bias, 0)


    @classmethod
    def from_config(cls, cfg, input_shape):
        ret = super().from_config(cfg, input_shape)
        ret.update({
            'mult_proposal_score': cfg.MODEL.ROI_BOX_HEAD.MULT_PROPOSAL_SCORE,
            'sync_caption_batch': cfg.MODEL.SYNC_CAPTION_BATCH,
            'use_sigmoid_ce': cfg.MODEL.ROI_BOX_HEAD.USE_SIGMOID_CE,
            'use_fed_loss': cfg.MODEL.ROI_BOX_HEAD.USE_FED_LOSS,
            'ignore_zero_cats': cfg.MODEL.ROI_BOX_HEAD.IGNORE_ZERO_CATS,
            'fed_loss_num_cat': cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_NUM_CAT,
            'dynamic_classifier': cfg.MODEL.DYNAMIC_CLASSIFIER,
            'image_label_loss': cfg.MODEL.ROI_BOX_HEAD.IMAGE_LABEL_LOSS,
            'use_zeroshot_cls': cfg.MODEL.ROI_BOX_HEAD.USE_ZEROSHOT_CLS,
            'image_loss_weight': cfg.MODEL.ROI_BOX_HEAD.IMAGE_LOSS_WEIGHT,
            'with_softmax_prop': cfg.MODEL.ROI_BOX_HEAD.WITH_SOFTMAX_PROP,
            'caption_weight': cfg.MODEL.ROI_BOX_HEAD.CAPTION_WEIGHT,
            'neg_cap_weight': cfg.MODEL.ROI_BOX_HEAD.NEG_CAP_WEIGHT,
            'add_image_box': cfg.MODEL.ROI_BOX_HEAD.ADD_IMAGE_BOX,
            'debug': cfg.DEBUG or cfg.SAVE_DEBUG or cfg.IS_DEBUG,
            'prior_prob': cfg.MODEL.ROI_BOX_HEAD.PRIOR_PROB,
            'cat_freq_path': cfg.MODEL.ROI_BOX_HEAD.CAT_FREQ_PATH,
            'fed_loss_freq_weight': cfg.MODEL.ROI_BOX_HEAD.FED_LOSS_FREQ_WEIGHT,
            'softmax_weak_loss': cfg.MODEL.ROI_BOX_HEAD.SOFTMAX_WEAK_LOSS,
        })
        if ret['use_zeroshot_cls']:
            ret['cls_score'] = ZeroShotClassifier(cfg, input_shape)
        return ret

    def losses(self, predictions, proposals, \
        use_advanced_loss=True,
        classifier_info=(None,None,None)):
        """
        enable advanced loss
        """
        scores, proposal_deltas = predictions
        gt_classes = (
            cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0)
        )
        num_classes = self.num_classes
        if self.dynamic_classifier:
            _, cls_id_map = classifier_info[1]
            gt_classes = cls_id_map[gt_classes]
            num_classes = scores.shape[1] - 1
            assert cls_id_map[self.num_classes] == num_classes
        _log_classification_stats(scores, gt_classes)

        if len(proposals):
            proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)  # Nx4
            assert not proposal_boxes.requires_grad, "Proposals should not require gradients!"
            gt_boxes = cat(
                [(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals],
                dim=0,
            )
        else:
            proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device)

        if self.use_sigmoid_ce:
            loss_cls = self.sigmoid_cross_entropy_loss(scores, gt_classes)
        else:
            loss_cls = self.softmax_cross_entropy_loss(scores, gt_classes)
        return {
            "loss_cls": loss_cls, 
            "loss_box_reg": self.box_reg_loss(
                proposal_boxes, gt_boxes, proposal_deltas, gt_classes, 
                num_classes=num_classes)
        }


    def sigmoid_cross_entropy_loss(self, pred_class_logits, gt_classes):
        if pred_class_logits.numel() == 0:
            return pred_class_logits.new_zeros([1])[0] # This is more robust than .sum() * 0.

        B = pred_class_logits.shape[0]
        C = pred_class_logits.shape[1] - 1

        target = pred_class_logits.new_zeros(B, C + 1)
        target[range(len(gt_classes)), gt_classes] = 1 # B x (C + 1)
        target = target[:, :C] # B x C

        weight = 1
 
        if self.use_fed_loss and (self.freq_weight is not None): # fedloss
            appeared = get_fed_loss_inds(
                gt_classes, 
                num_sample_cats=self.fed_loss_num_cat,
                C=C,
                weight=self.freq_weight)
            appeared_mask = appeared.new_zeros(C + 1)
            appeared_mask[appeared] = 1 # C + 1
            appeared_mask = appeared_mask[:C]
            fed_w = appeared_mask.view(1, C).expand(B, C)
            weight = weight * fed_w.float()
        if self.ignore_zero_cats and (self.freq_weight is not None):
            w = (self.freq_weight.view(-1) > 1e-4).float()
            weight = weight * w.view(1, C).expand(B, C)
            # import pdb; pdb.set_trace()

        cls_loss = F.binary_cross_entropy_with_logits(
            pred_class_logits[:, :-1], target, reduction='none') # B x C
        loss =  torch.sum(cls_loss * weight) / B  
        return loss
        
    
    def softmax_cross_entropy_loss(self, pred_class_logits, gt_classes):
        """
        change _no_instance handling
        """
        if pred_class_logits.numel() == 0:
            return pred_class_logits.new_zeros([1])[0]

        if self.ignore_zero_cats and (self.freq_weight is not None):
            zero_weight = torch.cat([
                (self.freq_weight.view(-1) > 1e-4).float(),
                self.freq_weight.new_ones(1)]) # C + 1
            loss = F.cross_entropy(
                pred_class_logits, gt_classes, 
                weight=zero_weight, reduction="mean")
        elif self.use_fed_loss and (self.freq_weight is not None): # fedloss
            C = pred_class_logits.shape[1] - 1
            appeared = get_fed_loss_inds(
                gt_classes, 
                num_sample_cats=self.fed_loss_num_cat,
                C=C,
                weight=self.freq_weight)
            appeared_mask = appeared.new_zeros(C + 1).float()
            appeared_mask[appeared] = 1. # C + 1
            appeared_mask[C] = 1.
            loss = F.cross_entropy(
                pred_class_logits, gt_classes, 
                weight=appeared_mask, reduction="mean")        
        else:
            loss = F.cross_entropy(
                pred_class_logits, gt_classes, reduction="mean")                  
        return loss


    def box_reg_loss(
        self, proposal_boxes, gt_boxes, pred_deltas, gt_classes, 
        num_classes=-1):
        """
        Allow custom background index
        """
        num_classes = num_classes if num_classes > 0 else self.num_classes
        box_dim = proposal_boxes.shape[1]  # 4 or 5
        fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < num_classes))[0]
        if pred_deltas.shape[1] == box_dim:  # cls-agnostic regression
            fg_pred_deltas = pred_deltas[fg_inds]
        else:
            fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[
                fg_inds, gt_classes[fg_inds]
            ]

        if self.box_reg_loss_type == "smooth_l1":
            gt_pred_deltas = self.box2box_transform.get_deltas(
                proposal_boxes[fg_inds],
                gt_boxes[fg_inds],
            )
            loss_box_reg = smooth_l1_loss(
                fg_pred_deltas, gt_pred_deltas, self.smooth_l1_beta, reduction="sum"
            )
        elif self.box_reg_loss_type == "giou":
            fg_pred_boxes = self.box2box_transform.apply_deltas(
                fg_pred_deltas, proposal_boxes[fg_inds]
            )
            loss_box_reg = giou_loss(fg_pred_boxes, gt_boxes[fg_inds], reduction="sum")
        else:
            raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")
        return loss_box_reg / max(gt_classes.numel(), 1.0)

    def inference(self, predictions, proposals):
        """
        enable use proposal boxes
        """
        predictions = (predictions[0], predictions[1])
        boxes = self.predict_boxes(predictions, proposals)
        scores = self.predict_probs(predictions, proposals)
        if self.mult_proposal_score:
            proposal_scores = [p.get('objectness_logits') for p in proposals]
            scores = [(s * ps[:, None]) ** 0.5 \
                for s, ps in zip(scores, proposal_scores)]
        image_shapes = [x.image_size for x in proposals]
        return fast_rcnn_inference(
            boxes,
            scores,
            image_shapes,
            self.test_score_thresh,
            self.test_nms_thresh,
            self.test_topk_per_image,
        )


    def predict_probs(self, predictions, proposals):
        """
        support sigmoid
        """
        # scores, _ = predictions
        scores = predictions[0]
        num_inst_per_image = [len(p) for p in proposals]
        if self.use_sigmoid_ce:
            probs = scores.sigmoid()
        else:
            probs = F.softmax(scores, dim=-1)
        return probs.split(num_inst_per_image, dim=0)


    def image_label_losses(self, predictions, proposals, image_labels, \
        classifier_info=(None,None,None), ann_type='image'):
        '''
        Inputs:
            scores: N x (C + 1)
            image_labels B x 1
        '''
        num_inst_per_image = [len(p) for p in proposals]
        scores = predictions[0]
        scores = scores.split(num_inst_per_image, dim=0) # B x n x (C + 1)
        if self.with_softmax_prop:
            prop_scores = predictions[2].split(num_inst_per_image, dim=0)
        else:
            prop_scores = [None for _ in num_inst_per_image]
        B = len(scores)
        img_box_count = 0
        select_size_count = 0
        select_x_count = 0
        select_y_count = 0
        max_score_count = 0
        storage = get_event_storage()
        loss = scores[0].new_zeros([1])[0]
        caption_loss = scores[0].new_zeros([1])[0]
        for idx, (score, labels, prop_score, p) in enumerate(zip(
            scores, image_labels, prop_scores, proposals)):
            if score.shape[0] == 0:
                loss += score.new_zeros([1])[0]
                continue
            if 'caption' in ann_type:
                score, caption_loss_img = self._caption_loss(
                    score, classifier_info, idx, B)
                caption_loss += self.caption_weight * caption_loss_img
                if ann_type == 'caption':
                    continue

            if self.debug:
                p.selected = score.new_zeros(
                    (len(p),), dtype=torch.long) - 1
            for i_l, label in enumerate(labels):
                if self.dynamic_classifier:
                    if idx == 0 and i_l == 0 and comm.is_main_process():
                        storage.put_scalar('stats_label', label)
                    label = classifier_info[1][1][label]
                    assert label < score.shape[1]
                if self.image_label_loss in ['wsod', 'wsddn']: 
                    loss_i, ind = self._wsddn_loss(score, prop_score, label)
                elif self.image_label_loss == 'max_score':
                    loss_i, ind = self._max_score_loss(score, label)
                elif self.image_label_loss == 'max_size':
                    loss_i, ind = self._max_size_loss(score, label, p)
                elif self.image_label_loss == 'first':
                    loss_i, ind = self._first_loss(score, label)
                elif self.image_label_loss == 'image':
                    loss_i, ind = self._image_loss(score, label)
                elif self.image_label_loss == 'min_loss':
                    loss_i, ind = self._min_loss_loss(score, label)
                else:
                    assert 0
                loss += loss_i / len(labels)
                if type(ind) == type([]):
                    img_box_count = sum(ind) / len(ind)
                    if self.debug:
                        for ind_i in ind:
                            p.selected[ind_i] = label
                else:
                    img_box_count = ind
                    select_size_count = p[ind].proposal_boxes.area() / \
                        (p.image_size[0] * p.image_size[1])
                    max_score_count = score[ind, label].sigmoid()
                    select_x_count = (p.proposal_boxes.tensor[ind, 0] + \
                        p.proposal_boxes.tensor[ind, 2]) / 2 / p.image_size[1]
                    select_y_count = (p.proposal_boxes.tensor[ind, 1] + \
                        p.proposal_boxes.tensor[ind, 3]) / 2 / p.image_size[0]
                    if self.debug:
                        p.selected[ind] = label

        loss = loss / B
        storage.put_scalar('stats_l_image', loss.item())
        if 'caption' in ann_type:
            caption_loss = caption_loss / B
            loss = loss + caption_loss
            storage.put_scalar('stats_l_caption', caption_loss.item())
        if comm.is_main_process():
            storage.put_scalar('pool_stats', img_box_count)
            storage.put_scalar('stats_select_size', select_size_count)
            storage.put_scalar('stats_select_x', select_x_count)
            storage.put_scalar('stats_select_y', select_y_count)
            storage.put_scalar('stats_max_label_score', max_score_count)

        return {
            'image_loss': loss * self.image_loss_weight,
            'loss_cls': score.new_zeros([1])[0],
            'loss_box_reg': score.new_zeros([1])[0]}


    def forward(self, x, classifier_info=(None,None,None)):
        """
        enable classifier_info
        """
        if x.dim() > 2:
            x = torch.flatten(x, start_dim=1)
        scores = []
   
        if classifier_info[0] is not None:
            cls_scores = self.cls_score(x, classifier=classifier_info[0])
            scores.append(cls_scores)
        else:
            cls_scores = self.cls_score(x)
            scores.append(cls_scores)

        if classifier_info[2] is not None:
            cap_cls = classifier_info[2]
            if self.sync_caption_batch:
                caption_scores = self.cls_score(x, classifier=cap_cls[:, :-1]) 
            else:
                caption_scores = self.cls_score(x, classifier=cap_cls)
            scores.append(caption_scores)
        scores = torch.cat(scores, dim=1) # B x C' or B x N or B x (C'+N)

        proposal_deltas = self.bbox_pred(x)
        if self.with_softmax_prop:
            prop_score = self.prop_score(x)
            return scores, proposal_deltas, prop_score
        else:
            return scores, proposal_deltas


    def _caption_loss(self, score, classifier_info, idx, B):
        assert (classifier_info[2] is not None)
        assert self.add_image_box
        cls_and_cap_num = score.shape[1]
        cap_num = classifier_info[2].shape[0]
        score, caption_score = score.split(
            [cls_and_cap_num - cap_num, cap_num], dim=1)
        # n x (C + 1), n x B
        caption_score = caption_score[-1:] # 1 x B # -1: image level box
        caption_target = caption_score.new_zeros(
            caption_score.shape) # 1 x B or 1 x MB, M: num machines
        if self.sync_caption_batch:
            # caption_target: 1 x MB
            rank = comm.get_rank()
            global_idx = B * rank + idx
            assert (classifier_info[2][
                global_idx, -1] - rank) ** 2 < 1e-8, \
                    '{} {} {} {} {}'.format(
                        rank, global_idx, 
                        classifier_info[2][global_idx, -1],
                        classifier_info[2].shape, 
                        classifier_info[2][:, -1])
            caption_target[:, global_idx] = 1.
        else:
            assert caption_score.shape[1] == B
            caption_target[:, idx] = 1.
        caption_loss_img = F.binary_cross_entropy_with_logits(
                caption_score, caption_target, reduction='none')
        if self.sync_caption_batch:
            fg_mask = (caption_target > 0.5).float()
            assert (fg_mask.sum().item() - 1.) ** 2 < 1e-8, '{} {}'.format(
                fg_mask.shape, fg_mask)
            pos_loss = (caption_loss_img * fg_mask).sum()
            neg_loss = (caption_loss_img * (1. - fg_mask)).sum()
            caption_loss_img = pos_loss + self.neg_cap_weight * neg_loss
        else:
            caption_loss_img = caption_loss_img.sum()
        return score, caption_loss_img


    def _wsddn_loss(self, score, prop_score, label):
        assert prop_score is not None
        loss = 0
        final_score = score.sigmoid() * \
            F.softmax(prop_score, dim=0) # B x (C + 1)
        img_score = torch.clamp(
            torch.sum(final_score, dim=0), 
            min=1e-10, max=1-1e-10) # (C + 1)
        target = img_score.new_zeros(img_score.shape) # (C + 1)
        target[label] = 1.
        loss += F.binary_cross_entropy(img_score, target)
        ind = final_score[:, label].argmax()
        return loss, ind


    def _max_score_loss(self, score, label):
        loss = 0
        target = score.new_zeros(score.shape[1])
        target[label] = 1.
        ind = score[:, label].argmax().item()
        loss += F.binary_cross_entropy_with_logits(
            score[ind], target, reduction='sum')
        return loss, ind


    def _min_loss_loss(self, score, label):
        loss = 0
        target = score.new_zeros(score.shape)
        target[:, label] = 1.
        with torch.no_grad():
            x = F.binary_cross_entropy_with_logits(
                score, target, reduction='none').sum(dim=1) # n
        ind = x.argmin().item()
        loss += F.binary_cross_entropy_with_logits(
            score[ind], target[0], reduction='sum')
        return loss, ind


    def _first_loss(self, score, label):
        loss = 0
        target = score.new_zeros(score.shape[1])
        target[label] = 1.
        ind = 0
        loss += F.binary_cross_entropy_with_logits(
            score[ind], target, reduction='sum')
        return loss, ind


    def _image_loss(self, score, label):
        assert self.add_image_box
        target = score.new_zeros(score.shape[1])
        target[label] = 1.
        ind = score.shape[0] - 1
        loss = F.binary_cross_entropy_with_logits(
            score[ind], target, reduction='sum')
        return loss, ind


    def _max_size_loss(self, score, label, p):
        loss = 0
        target = score.new_zeros(score.shape[1])
        target[label] = 1.
        sizes = p.proposal_boxes.area()
        ind = sizes[:-1].argmax().item() if len(sizes) > 1 else 0
        if self.softmax_weak_loss:
            loss += F.cross_entropy(
                score[ind:ind+1], 
                score.new_tensor(label, dtype=torch.long).view(1), 
                reduction='sum')
        else:
            loss += F.binary_cross_entropy_with_logits(
                score[ind], target, reduction='sum')
        return loss, ind



def put_label_distribution(storage, hist_name, hist_counts, num_classes):
    """
    """
    ht_min, ht_max = 0, num_classes
    hist_edges = torch.linspace(
        start=ht_min, end=ht_max, steps=num_classes + 1, dtype=torch.float32)

    hist_params = dict(
        tag=hist_name,
        min=ht_min,
        max=ht_max,
        num=float(hist_counts.sum()),
        sum=float((hist_counts * torch.arange(len(hist_counts))).sum()),
        sum_squares=float(((hist_counts * torch.arange(len(hist_counts))) ** 2).sum()),
        bucket_limits=hist_edges[1:].tolist(),
        bucket_counts=hist_counts.tolist(),
        global_step=storage._iter,
    )
    storage._histograms.append(hist_params)