Spaces:
Sleeping
Sleeping
File size: 8,667 Bytes
a5604b3 77f3515 a5604b3 9571b87 77f3515 9571b87 77f3515 9571b87 7163838 c139d3f 9571b87 cc361dd 9571b87 980c76b 9571b87 980c76b 9571b87 1498a37 cc361dd 9571b87 980c76b 77f3515 9571b87 77f3515 9571b87 6458094 980c76b 6458094 a5604b3 6458094 980c76b 6458094 dfc8148 6458094 942ca77 6458094 9571b87 7163838 6458094 9571b87 6458094 9571b87 3037e32 6458094 9571b87 6458094 9571b87 6458094 9571b87 dfc8148 9571b87 3037e32 9571b87 ac69117 9571b87 3037e32 980c76b 6458094 ac69117 6458094 9571b87 6458094 9571b87 6458094 9571b87 980c76b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import spaces
from typing import List, Tuple, Dict
from collections import OrderedDict
import gradio as gr
import torch
import torch.nn.functional as F
import timm
from timm.data import create_transform
from timm.models import create_model
from timm.utils import AttentionExtract
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
def get_attention_models() -> List[str]:
"""Get a list of timm models that have attention blocks."""
all_models = timm.list_pretrained()
# FIXME Focusing on ViT models for initial impl
attention_models = [model for model in all_models if any([model.lower().startswith(p) for p in ('vit', 'deit', 'beit', 'eva')])]
return attention_models
def load_model(model_name: str) -> Tuple[torch.nn.Module, AttentionExtract]:
"""Load a model from timm and prepare it for attention extraction."""
timm.layers.set_fused_attn(False)
model = create_model(model_name, pretrained=True)
model = model.cuda() # Move the model to CUDA
model.eval()
extractor = AttentionExtract(model, method='fx')
return model, extractor
@spaces.GPU
def process_image(
image: Image.Image,
model: torch.nn.Module,
extractor: AttentionExtract
) -> Dict[str, torch.Tensor]:
"""Process the input image and get the attention maps."""
# Get the correct transform for the model
config = model.pretrained_cfg
transform = create_transform(
input_size=config['input_size'],
crop_pct=config['crop_pct'],
mean=config['mean'],
std=config['std'],
interpolation=config['interpolation'],
is_training=False
)
# Preprocess the image and move to CUDA
tensor = transform(image).unsqueeze(0).cuda()
# Extract attention maps
attention_maps = extractor(tensor)
return attention_maps
def apply_mask(image: np.ndarray, mask: np.ndarray, color: Tuple[float, float, float], alpha: float = 0.5) -> np.ndarray:
# Ensure mask and image have the same shape
mask = mask[:, :, np.newaxis]
mask = np.repeat(mask, 3, axis=2)
# Convert color to numpy array
color = np.array(color)
# Apply mask
masked_image = image * (1 - alpha * mask) + alpha * mask * color[np.newaxis, np.newaxis, :] * 255
return masked_image.astype(np.uint8)
def rollout(attentions, discard_ratio, head_fusion, num_prefix_tokens=1):
device = attentions[0].device
result = torch.eye(attentions[0].size(-1)).to(device)
with torch.no_grad():
for attention in attentions:
if head_fusion.startswith('mean'):
attention_heads_fused = attention.mean(dim=0)
elif head_fusion == "max":
attention_heads_fused = attention.amax(dim=0)
elif head_fusion == "min":
attention_heads_fused = attention.amin(dim=0)
else:
raise ValueError("Attention head fusion type Not supported")
# Discard the lowest attentions, but don't discard the prefix tokens
flat = attention_heads_fused.view(-1)
_, indices = flat.topk(int(flat.size(-1) * discard_ratio), -1, False)
indices = indices[indices >= num_prefix_tokens]
flat[indices] = 0
I = torch.eye(attention_heads_fused.size(-1)).to(device)
a = (attention_heads_fused + 1.0 * I) / 2
a = a / a.sum(dim=-1)
result = torch.matmul(a, result)
# Look at the total attention between the prefix tokens (usually class tokens)
# and the image patches
mask = result[0, num_prefix_tokens:]
width = int(mask.size(-1) ** 0.5)
mask = mask.reshape(width, width).cpu().numpy()
mask = mask / np.max(mask)
return mask
@spaces.GPU
def visualize_attention(
image: Image.Image,
model_name: str,
head_fusion: str,
discard_ratio: float,
) -> Tuple[List[Image.Image], Image.Image]:
"""Visualize attention maps and rollout for the given image and model."""
model, extractor = load_model(model_name)
attention_maps = process_image(image, model, extractor)
num_prefix_tokens = getattr(model, 'num_prefix_tokens', 1) # Default to 1 class token if not specified
# Convert PIL Image to numpy array
image_np = np.array(image)
# Create visualizations
visualizations = []
attentions_for_rollout = []
for layer_name, attn_map in attention_maps.items():
print(f"Attention map shape for {layer_name}: {attn_map.shape}")
attn_map = attn_map[0].detach() # Remove batch dimension and detach
attentions_for_rollout.append(attn_map)
attn_map = attn_map[:, :, num_prefix_tokens:] # Remove prefix tokens for visualization
if head_fusion == 'mean_std':
attn_map = attn_map.mean(0) / attn_map.std(0)
elif head_fusion == 'mean':
attn_map = attn_map.mean(0)
elif head_fusion == 'max':
attn_map = attn_map.amax(0)
elif head_fusion == 'min':
attn_map = attn_map.amin(0)
else:
raise ValueError(f"Invalid head fusion method: {head_fusion}")
# Use the first token's attention (usually the class token)
attn_map = attn_map[0]
# Reshape the attention map to 2D
num_patches = int(attn_map.shape[0] ** 0.5)
attn_map = attn_map.reshape(num_patches, num_patches)
# Interpolate to match image size
attn_map = attn_map.unsqueeze(0).unsqueeze(0)
attn_map = F.interpolate(attn_map, size=(image_np.shape[0], image_np.shape[1]), mode='bilinear', align_corners=False)
attn_map = attn_map.squeeze().cpu().detach().numpy() # Move to CPU, detach, and convert to numpy
# Normalize attention map
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())
# Create visualization
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
# Original image
ax1.imshow(image_np)
ax1.set_title("Original Image")
ax1.axis('off')
# Attention map overlay
masked_image = apply_mask(image_np, attn_map, color=(1, 0, 0)) # Red mask
ax2.imshow(masked_image)
ax2.set_title(f'Attention Map for {layer_name}')
ax2.axis('off')
plt.tight_layout()
# Convert plot to image
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
vis_image = Image.fromarray(data)
visualizations.append(vis_image)
plt.close(fig)
# Ensure tensors are on CPU and detached before converting to numpy
attentions_for_rollout = [attn.cpu().detach() for attn in attentions_for_rollout]
# Calculate rollout
rollout_mask = rollout(attentions_for_rollout, discard_ratio, head_fusion, num_prefix_tokens)
# Create rollout visualization
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))
# Original image
ax1.imshow(image_np)
ax1.set_title("Original Image")
ax1.axis('off')
# Rollout overlay
rollout_mask_pil = Image.fromarray((rollout_mask * 255).astype(np.uint8))
rollout_mask_resized = np.array(rollout_mask_pil.resize((image_np.shape[1], image_np.shape[0]), Image.BICUBIC)) / 255.0
masked_image = apply_mask(image_np, rollout_mask_resized, color=(1, 0, 0)) # Red mask
ax2.imshow(masked_image)
ax2.set_title('Attention Rollout')
ax2.axis('off')
plt.tight_layout()
# Convert plot to image
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
rollout_image = Image.fromarray(data)
plt.close(fig)
return visualizations, rollout_image
# Create Gradio interface
iface = gr.Interface(
fn=visualize_attention,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Dropdown(choices=get_attention_models(), label="Select Model"),
gr.Dropdown(
choices=['mean_std', 'mean', 'max', 'min'],
label="Head Fusion Method",
value='mean' # Default value
),
gr.Slider(0, 1, 0.9, label="Discard Ratio", info="Ratio of lowest attentions to discard")
],
outputs=[
gr.Gallery(label="Attention Maps"),
gr.Image(label="Attention Rollout")
],
title="Attention Map Visualizer for timm Models",
description="Upload an image and select a timm model to visualize its attention maps."
)
# Launch the interface
iface.launch() |