Spaces:
Running
Running
taka-yamakoshi
commited on
Commit
•
8a204f8
1
Parent(s):
e9daec4
add more functions
Browse files
app.py
CHANGED
@@ -2,16 +2,46 @@ import pandas as pd
|
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
-
from transformers import AlbertTokenizer
|
6 |
import io
|
7 |
import time
|
8 |
|
9 |
@st.cache(show_spinner=True,allow_output_mutation=True)
|
10 |
def load_model(model_name):
|
11 |
-
if model_name.startswith('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
tokenizer = AlbertTokenizer.from_pretrained(model_name)
|
13 |
return tokenizer
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
if __name__=='__main__':
|
17 |
|
@@ -43,34 +73,34 @@ if __name__=='__main__':
|
|
43 |
st.markdown(hide_table_row_index, unsafe_allow_html=True)
|
44 |
|
45 |
# Title
|
46 |
-
st.markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
encoded_sent = [str(token) for token in input_sent[1:-1]]
|
59 |
-
decoded_sent = [tokenizer.decode([token]) for token in input_sent[1:-1]]
|
60 |
-
num_tokens[f'sent_{sent_id+1}'] = len(decoded_sent)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
st.
|
68 |
-
st.write(' '.join(decoded_sent))
|
69 |
-
st.markdown(f"<p style='text-align: center; color: black; font-family:Arial; font-size:20px;'>{len(decoded_sent)} tokens </p>", unsafe_allow_html=True)
|
70 |
|
71 |
-
|
72 |
-
st.
|
73 |
-
|
74 |
-
st.markdown("<p style='text-align:center; color:MediumAquamarine; font-family:Arial; font-size:20px;'>Matched! </p>", unsafe_allow_html=True)
|
75 |
-
else:
|
76 |
-
st.markdown("<p style='text-align:center; color:Salmon; font-family:Arial; font-size:20px;'>Not Matched... </p>", unsafe_allow_html=True)
|
|
|
2 |
import streamlit as st
|
3 |
import numpy as np
|
4 |
import torch
|
|
|
5 |
import io
|
6 |
import time
|
7 |
|
8 |
@st.cache(show_spinner=True,allow_output_mutation=True)
|
9 |
def load_model(model_name):
|
10 |
+
if model_name.startswith('bert'):
|
11 |
+
from transformers import BertTokenizer
|
12 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
13 |
+
elif model_name.startswith('gpt2'):
|
14 |
+
from transformers import GPT2Tokenizer
|
15 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
16 |
+
elif model_name.startswith('roberta'):
|
17 |
+
from transformers import RobertaTokenizer
|
18 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
19 |
+
elif model_name.startswith('albert'):
|
20 |
+
from transformers import AlbertTokenizer
|
21 |
tokenizer = AlbertTokenizer.from_pretrained(model_name)
|
22 |
return tokenizer
|
23 |
|
24 |
+
def generate_markdown(text,color='black',font='Arial',size=20):
|
25 |
+
return f"<p style='text-align:center; color:{color}; font-family:{font}; font-size:{size}px;'>{text}</p>"
|
26 |
+
|
27 |
+
def TokenizeText(sentence):
|
28 |
+
if len(sentence)>0:
|
29 |
+
input_sent = tokenizer(sentence)['input_ids']
|
30 |
+
encoded_sent = [str(token) for token in input_sent[1:-1]]
|
31 |
+
decoded_sent = [tokenizer.decode([token]) for token in input_sent[1:-1]]
|
32 |
+
num_tokens = len(decoded_sent)
|
33 |
+
|
34 |
+
#char_nums = [len(word)+2 for word in decoded_sent]
|
35 |
+
#word_cols = st.columns(char_nums)
|
36 |
+
#for word_col,word in zip(word_cols,decoded_sent):
|
37 |
+
#with word_col:
|
38 |
+
#st.write(word)
|
39 |
+
st.write(' '.join(encoded_sent))
|
40 |
+
st.write(' '.join(decoded_sent))
|
41 |
+
st.markdown(generate_markdown(f'{num_tokens} tokens'), unsafe_allow_html=True)
|
42 |
+
|
43 |
+
return num_tokens
|
44 |
+
|
45 |
|
46 |
if __name__=='__main__':
|
47 |
|
|
|
73 |
st.markdown(hide_table_row_index, unsafe_allow_html=True)
|
74 |
|
75 |
# Title
|
76 |
+
st.markdown(generate_markdown('Tokenizer Demo',size=32), unsafe_allow_html=True)
|
77 |
+
|
78 |
+
# Select and load the tokenizer
|
79 |
+
tokenizer_name = st.selectbox('Choose the tokenizer from below',
|
80 |
+
('bert-base-uncased','bert-large-cased',
|
81 |
+
'gpt2','gpt2-large',
|
82 |
+
'roberta-base','roberta-large',
|
83 |
+
'albert-base-v2','albert-xxlarge-v2'),index=7)
|
84 |
+
tokenizer = load_model(tokenizer_name)
|
85 |
|
86 |
+
comparison_mode = st.checkbox('Compare two texts')
|
87 |
+
if comparison_mode:
|
88 |
+
sent_cols = st.columns(2)
|
89 |
+
num_tokens = {}
|
90 |
+
sents = {}
|
91 |
+
for sent_id, sent_col in enumerate(sent_cols):
|
92 |
+
with sent_col:
|
93 |
+
sentence = st.text_input(f'Text {sent_id+1}')
|
94 |
+
sents[f'sent_{sent_id+1}'] = sentence
|
95 |
+
num_tokens[f'{sent_id+1}'] = TokenizeText(sentence)
|
|
|
|
|
|
|
96 |
|
97 |
+
if len(sents['sent_1'])>0 and len(sents['sent_2'])>0:
|
98 |
+
st.markdown(generate_markdown('Result: ',size=16), unsafe_allow_html=True)
|
99 |
+
if num_tokens[f'sent_1']==num_tokens[f'sent_2']:
|
100 |
+
st.markdown(generate_markdown('Matched! ',color='MediumAquamarine'), unsafe_allow_html=True)
|
101 |
+
else:
|
102 |
+
st.markdown(generate_markdown('Not Matched... ',color='Salmon'), unsafe_allow_html=True)
|
|
|
|
|
103 |
|
104 |
+
else:
|
105 |
+
sentence = st.text_input(f'Text')
|
106 |
+
num_tokens = TokenizeText(sentence)
|
|
|
|
|
|