Spaces:
Runtime error
Runtime error
from diffusers import ( | |
ControlNetModel, | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionControlNetImg2ImgPipeline, | |
) | |
from compel import Compel | |
from PIL import Image | |
import cv2 | |
import gc | |
import gradio | |
import numpy | |
import torch | |
base_model = "SimianLuo/LCM_Dreamshaper_v7" | |
controlnet_model = "lllyasviel/control_v11p_sd15_canny" | |
device = "cuda" | |
dtype = torch.float16 | |
width = 512 | |
height = 512 | |
controlnet = ControlNetModel.from_pretrained( | |
controlnet_model, tourch_dtype=dtype | |
) | |
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
base_model, controlnet=controlnet, safety_checker=None | |
).to(dtype=dtype) | |
pipe.enable_model_cpu_offload(device=device) | |
pipe.unet.to(memory_format=torch.channels_last) | |
compel_proc = Compel( | |
tokenizer=pipe.tokenizer, | |
text_encoder=pipe.text_encoder, | |
truncate_long_prompts=False, | |
) | |
pipe_no_controlnet = StableDiffusionImg2ImgPipeline.from_pretrained( | |
base_model, safety_checker=None | |
).to(dtype=dtype) | |
pipe.enable_model_cpu_offload(device=device) | |
pipe_no_controlnet.enable_model_cpu_offload() | |
compel_proc_no_controlnet = Compel( | |
tokenizer=pipe_no_controlnet.tokenizer, | |
text_encoder=pipe_no_controlnet.text_encoder, | |
truncate_long_prompts=False, | |
) | |
def predict( | |
prompt: str, | |
image: Image, | |
use_controlnet: bool, | |
generator: int, | |
num_inference_steps: int, | |
strength: float, | |
guidance_scale: float, | |
controlnet_conditioning_scale: float, | |
canny_lower_threshold: int, | |
canny_higher_threshold: int, | |
): | |
if image is None: | |
return None | |
generator = torch.manual_seed(generator) | |
# TODO: Keep the original ratio? | |
image = image.resize((width, height)) | |
if use_controlnet: | |
prompt_embeds = compel_proc(prompt) | |
image_array = numpy.array(image) | |
image_array = cv2.Canny( | |
image_array, | |
canny_lower_threshold, | |
canny_higher_threshold | |
) | |
image_array = image_array[:, :, None] | |
image_array = numpy.concatenate([image_array, image_array, image_array], axis=2) | |
control_image = Image.fromarray(image_array) | |
results = pipe( | |
control_image=control_image, | |
control_guidance_end=1.0, | |
control_guidance_start=0.0, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
image=image, | |
num_inference_steps=num_inference_steps, | |
output_type="pil", | |
prompt_embeds=prompt_embeds, | |
strength=strength, | |
) | |
control_image.close() | |
else: | |
prompt_embeds = compel_proc_no_controlnet(prompt) | |
results = pipe_no_controlnet( | |
generator=generator, | |
guidance_scale=guidance_scale, | |
image=image, | |
num_inference_steps=num_inference_steps, | |
output_type="pil", | |
prompt_embeds=prompt_embeds, | |
strength=strength, | |
) | |
gc.collect() | |
if len(results.images) > 0: | |
return results.images[0] | |
return None | |
app = gradio.Interface( | |
fn=predict, | |
inputs=[ | |
gradio.Textbox("Kirisame Marisa, Cute, Smiling, High quality, Realistic"), # prompt | |
gradio.Image(type="pil"), # image | |
gradio.Checkbox(True), # use_controlnet | |
gradio.Slider(0, 2147483647, 2159232, step=1), # generator | |
gradio.Slider(2, 15, 4, step=1), # num_inference_steps | |
gradio.Slider(0.0, 1.0, 0.5, step=0.01), # strength | |
gradio.Slider(0.0, 5.0, 0.2, step=0.01), # guidance_scale | |
gradio.Slider(0.0, 1.0, 0.8, step=0.01), # controlnet_conditioning_scale | |
gradio.Slider(0, 255, 100, step=1), # canny_lower_threshold | |
gradio.Slider(0, 255, 200, step=1), # canny_higher_threshold | |
], | |
outputs=gradio.Image(type="pil") | |
) | |
app.launch() | |