import cv2 import numpy as np import onnxruntime as rt import gradio as gr from huggingface_hub import hf_hub_download from dataclasses import dataclass tagger_model_path = hf_hub_download( repo_id="skytnt/deepdanbooru_onnx", filename="deepdanbooru.onnx") tagger_model = rt.InferenceSession( tagger_model_path, providers=['CPUExecutionProvider']) tagger_model_meta = tagger_model.get_modelmeta().custom_metadata_map tagger_tags = eval(tagger_model_meta['tags']) @dataclass class Tag: lable: str prob: float def tagger_predict(image, score_threshold): image = np.array(image) # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) s = 512 h, w = image.shape[:-1] h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) ph, pw = s - h, s - w image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA) image = cv2.copyMakeBorder( image, ph // 2, ph - ph // 2, pw // 2, pw - pw // 2, cv2.BORDER_REPLICATE) image = image.astype(np.float32) / 255 image = image[np.newaxis, :] probs = tagger_model.run(None, {"input_1": image})[0][0] probs = probs.astype(np.float32) res = [] for prob, label in zip(probs.tolist(), tagger_tags): if prob < score_threshold: continue res.append(Tag(label, prob)) sorted_res = sorted(res, key=lambda Tag: Tag.prob, reverse=True) output_string = "" output_string_without_prob = "" for iter in sorted_res: output_string += iter.lable + f" : {iter.prob:.2f}\n" output_string_without_prob += iter.lable + "\n" output_string = output_string[:-1] output_string_without_prob = output_string_without_prob[:-1] return (output_string, output_string_without_prob) def gradio_wrapper(image, score_threshold): return tagger_predict(image, score_threshold) inputs = gr.inputs.Image() slider = gr.inputs.Slider(minimum=0, maximum=1, default=0.5) outputs = gr.outputs.Textbox() outputs_list = gr.outputs.Textbox() iface = gr.Interface(fn=gradio_wrapper, inputs=[inputs, slider], outputs=[outputs, outputs_list]) iface.launch()