taskswithcode's picture
Create app.py
e56ce5e
raw
history blame
10.4 kB
import time
import streamlit as st
import torch
import string
from io import StringIO
import json
from transformers import BertTokenizer, BertForMaskedLM
MAX_INPUT = 1000
model_names = [
{ "name":"SGPT-125M",
"model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
"mark":False,
"class":"SGPTModel"},
{ "name":"SGPT-5.8B",
"model": "Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit" ,
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic",
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"mark":True,
"class":"SGPTModel"},
{ "name":"SGPT-1.3B",
"model": "Muennighoff/SGPT-1.3B-weightedmean-msmarco-specb-bitfit",
"mark":False,
"class":"SGPTModel"},
{ "name":"sentence-transformers/all-MiniLM-L6-v2",
"model":"sentence-transformers/all-MiniLM-L6-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Nearly 4 million downloads from huggingface",
"sota_link":"https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":True,
"class":"HFModel"},
]
example_file_names = {
"Machine learning terms (30+ phrases)": "tests/small_test.txt",
"Customer feedback mixed with noise (50+ sentences)":"tests/larger_test.txt"
}
def construct_model_info_for_display():
options_arr = []
markdown_str = "<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated</b></div>"
for node in model_names:
options_arr .append(node["name"])
if (node["mark"] == True):
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\">&nbsp;•&nbsp;Model:&nbsp;<a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Code released by:&nbsp;<a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Model info:&nbsp;<a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Forked <a href=\'{node['fork_url']}\' target='_blank'>code</a><br/><br/></div>"
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>•&nbsp;Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not saved</div>"
limit = "{:,}".format(MAX_INPUT)
markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">•&nbsp;User uploaded file has a maximum limit of {limit} sentences.</div>"
return options_arr,markdown_str
st.set_page_config(page_title='TWC - Compare state-of-the-art models for Sentence Similarity task', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
menu_items={
'Get help': "mailto:[email protected]",
'Report a Bug': "mailto:[email protected]",
'About': 'This app was created by taskswithcode. http://taskswithcode.com'
})
col,pad = st.columns([85,15])
with col:
st.image("long_form_logo_with_icon.png")
@st.experimental_memo
def load_model(model_name):
try:
ret_model = None
for node in model_names:
if (model_name.startswith(node["name"])):
obj_class = globals()[node["class"]]
ret_model = obj_class()
ret_model.init_model(node["model"])
assert(ret_model is not None)
except Exception as e:
st.error("Unable to load model:" + model_name + " " + str(e))
pass
return ret_model
@st.experimental_memo
def cached_compute_similarity(sentences,_model,model_name,main_index):
texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
results = _model.output_results(None,texts,embeddings,main_index)
return results
def uncached_compute_similarity(sentences,_model,model_name,main_index):
with st.spinner('Computing vectors for sentences'):
texts,embeddings = _model.compute_embeddings(sentences,is_file=False)
results = _model.output_results(None,texts,embeddings,main_index)
#st.success("Similarity computation complete")
return results
def run_test(model_name,sentences,display_area,main_index,user_uploaded):
display_area.text("Loading model:" + model_name)
model = load_model(model_name)
display_area.text("Model " + model_name + " load complete")
try:
if (user_uploaded):
results = uncached_compute_similarity(sentences,model,model_name,main_index)
else:
display_area.text("Computing vectors for sentences")
results = cached_compute_similarity(sentences,model,model_name,main_index)
display_area.text("Similarity computation complete")
return results
except Exception as e:
st.error("Some error occurred during prediction" + str(e))
st.stop()
return {}
def display_results(orig_sentences,main_index,results,response_info):
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
main_sent += "<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by cosine distance. Closest(1) to furthest(-1) away from main sentence</div>"
main_sent += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>Main sentence:</b>&nbsp;&nbsp;{orig_sentences[main_index]}</div>"
body_sent = []
download_data = {}
for key in results:
index = orig_sentences.index(key) + 1
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}]&nbsp;{key}&nbsp;&nbsp;&nbsp;<b>{results[key]:.2f}</b></div>")
download_data[key] = f"{results[key]:.2f}"
main_sent = main_sent + "\n" + '\n'.join(body_sent)
st.markdown(main_sent,unsafe_allow_html=True)
st.session_state["download_ready"] = json.dumps(download_data,indent=4)
def init_session():
st.session_state["download_ready"] = None
st.session_state["model_name"] = "ss_test"
st.session_state["main_index"] = 1
st.session_state["file_name"] = "default"
def main():
init_session()
st.markdown("<h4 style='text-align: center;'>Compare state-of-the-art models for Sentence Similarity task</h4>", unsafe_allow_html=True)
try:
with st.form('twc_form'):
uploaded_file = st.file_uploader("Step 1. Upload text file(one sentence in a line) or choose an example text file below.", type=".txt")
selected_file_index = st.selectbox(label='Example files ',
options = list(dict.keys(example_file_names)), index=0, key = "twc_file")
st.write("")
options_arr,markdown_str = construct_model_info_for_display()
selected_model = st.selectbox(label='Step 2. Select Model',
options = options_arr, index=0, key = "twc_model")
st.write("")
main_index = st.number_input('Step 3. Enter index of sentence in file to make it the main sentence:',value=1,min_value = 1)
st.write("")
submit_button = st.form_submit_button('Run')
input_status_area = st.empty()
display_area = st.empty()
if submit_button:
start = time.time()
if uploaded_file is not None:
st.session_state["file_name"] = uploaded_file.name
sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
else:
st.session_state["file_name"] = example_file_names[selected_file_index]
sentences = open(example_file_names[selected_file_index]).read()
sentences = sentences.split("\n")[:-1]
if (len(sentences) < main_index):
main_index = len(sentences)
st.info("Selected sentence index is larger than number of sentences in file. Truncating to " + str(main_index))
if (len(sentences) > MAX_INPUT):
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
sentences = sentences[:MAX_INPUT]
st.session_state["model_name"] = selected_model
st.session_state["main_index"] = main_index
results = run_test(selected_model,sentences,display_area,main_index - 1,(uploaded_file is not None))
display_area.empty()
with display_area.container():
response_info = f"Response time - {time.time() - start:.2f} secs for {len(sentences)} sentences"
display_results(sentences,main_index - 1,results,response_info)
#st.json(results)
st.download_button(
label="Download results as json",
data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
disabled = False if st.session_state["download_ready"] != None else True,
file_name= (st.session_state["model_name"] + "_" + str(st.session_state["main_index"]) + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"),
mime='text/json',
key ="download"
)
except Exception as e:
st.error("Some error occurred during loading" + str(e))
st.stop()
st.markdown(markdown_str, unsafe_allow_html=True)
if __name__ == "__main__":
main()