File size: 3,824 Bytes
4fae6ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e2e2c3
 
4fae6ee
 
 
 
 
 
d456b01
 
 
 
 
 
 
 
4fae6ee
 
 
 
 
 
 
 
 
 
7313605
d456b01
4fae6ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import random
import requests
from flask import Flask, request, Response, stream_with_context, render_template_string
    
app = Flask(__name__)

@app.route('/', methods=['GET'])
def index():
    template = '''
    <html>
        <head>
            <title>Huggingface Chat API Adapter</title>
        </head>
        <body>
            <h1>Huggingface Chat API Adapter</h1>

[Introduction]<br>
When using Huggingface's Serverless Inference API for a conversation, by default 100 new tokens are output and a cache is used.<br>
This API changes these two default settings, and other parameters are consistent with the official API.<br>
<br>
[How to use]<br>
1. <a target="_blank" href="https://huggingface.co/settings/tokens/new">Create a token</a> with the "Make calls to the serverless Inference API" permission as an API key.<br>
2. Set the Base URL of the OpenAI compatible client to "https://tastypear-sia-chat-adapter.hf.space/api".<br>
3. Use the full name of the model (e.g. mistralai/Mistral-Nemo-Instruct-2407)<br>
<br>
[Supported models]<br>
Most of the available models can be found <a target="_blank" href="https://huggingface.co/models?inference=warm&other=text-generation-inference">HERE</a>.<br>
Some "cold" models may also be supported (e.g. meta-llama/Meta-Llama-3.1-405B-Instruct), please test it yourself.<br>
Some models require a token created by a PRO user to use.<br>
<br>
[Avoid reaching the call limit]<br>
If you have multiple tokens, you can connect them with a semicolon (";") and the API will use a random one (e.g. "hf_aaaa;hf_bbbb;hf_...")<br>
        </body>
    </html>
    '''
    return render_template_string(template)
    
@app.route('/api/v1/chat/completions', methods=['POST'])
def proxy():
    headers = dict(request.headers)
    headers.pop('Host', None)
    headers.pop('Content-Length', None)
    keys = request.headers['Authorization'].split(' ')[1].replace(';','').split('hf_')
    headers['Authorization'] = f'Bearer hf_{random.choice(keys)}'
    headers['X-Use-Cache'] = 'false'
    
    json_data = request.get_json()
    model = json_data['model']    
    chat_api = f"https://api-inference.huggingface.co/models/{model}/v1/chat/completions"
    
    # gemma does not support system prompt
    # add system prompt before user message
    if model.startswith('google/gemma') and json_data["messages"][0]['role']=='system':
            system_prompt = json_data["messages"][0]['content']
            first_user_content = json_data["messages"][1]['content']
            json_data["messages"][1]['content'] = f'System: {system_prompt}\n\n---\n\n{first_user_content}'
            json_data["messages"] = json_data["messages"][1:]

    # Try to use the largest ctx
    if not 'max_tokens' in json_data:
        json_data['max_tokens'] = 2**32-1
        json_data['json_mode'] = True
        info = requests.post(chat_api, json=request.json, headers=headers, stream=False).text
        json_data['json_mode'] = False
        try:
            max_ctx = int(info.split("<= ")[1].split(".")[0])
            inputs = int(info.split("Given: ")[1].split("`")[0])
            json_data['max_tokens'] = max_ctx - inputs - 1
        except Exception as e:
            print(info)

    if not 'seed' in json_data:
        json_data['seed'] = random.randint(1,2**32)
    
    def generate():
        with requests.post(chat_api, json=request.json, headers=headers, stream=True) as resp:
            for chunk in resp.iter_content(chunk_size=1024):
                if chunk:
                    yield chunk
    
    return Response(stream_with_context(generate()), content_type='text/event-stream')

#import gevent.pywsgi
#from gevent import monkey;monkey.patch_all()
if __name__ == "__main__":
    app.run(debug=True)
    # gevent.pywsgi.WSGIServer((args.host, args.port), app).serve_forever()