Joshua Kravitz commited on
Commit
566f3c9
1 Parent(s): bb1a637

feat: Launch

Browse files
Files changed (2) hide show
  1. dgeb/tasks/tasks.py +7 -7
  2. leaderboard/app.py +6 -5
dgeb/tasks/tasks.py CHANGED
@@ -1,13 +1,13 @@
1
  """Task abstract class for evaluation and results."""
2
 
3
  import logging
4
- from typing import List, Literal, Optional, Any
5
- from importlib.metadata import version
6
  from enum import Enum
 
 
 
7
  import datasets
8
  from pydantic import BaseModel, model_validator
9
- from abc import ABC, abstractmethod
10
-
11
 
12
  # HACK: if Modality is not defined, then import it from modality.py
13
  try:
@@ -50,7 +50,7 @@ class LayerResult(BaseModel):
50
  metrics: List[TaskMetric]
51
 
52
 
53
- class GEBModel(BaseModel):
54
  hf_name: str
55
  num_layers: int
56
  num_params: int
@@ -87,7 +87,7 @@ class TaskResult(BaseModel):
87
  dgeb_version: str
88
  task: "TaskMetadata"
89
  # TODO: Convert model to ModelMetadata
90
- model: GEBModel
91
  results: List[LayerResult]
92
 
93
  @model_validator(mode="after")
@@ -105,7 +105,7 @@ class TaskResult(BaseModel):
105
  def from_dict(
106
  task_metadata: "TaskMetadata",
107
  layer_results: LayerResult,
108
- model_metadata: GEBModel,
109
  ):
110
  return TaskResult(
111
  dgeb_version=version("dgeb"),
 
1
  """Task abstract class for evaluation and results."""
2
 
3
  import logging
4
+ from abc import ABC, abstractmethod
 
5
  from enum import Enum
6
+ from importlib.metadata import version
7
+ from typing import Any, List, Literal, Optional
8
+
9
  import datasets
10
  from pydantic import BaseModel, model_validator
 
 
11
 
12
  # HACK: if Modality is not defined, then import it from modality.py
13
  try:
 
50
  metrics: List[TaskMetric]
51
 
52
 
53
+ class DGEBModel(BaseModel):
54
  hf_name: str
55
  num_layers: int
56
  num_params: int
 
87
  dgeb_version: str
88
  task: "TaskMetadata"
89
  # TODO: Convert model to ModelMetadata
90
+ model: DGEBModel
91
  results: List[LayerResult]
92
 
93
  @model_validator(mode="after")
 
105
  def from_dict(
106
  task_metadata: "TaskMetadata",
107
  layer_results: LayerResult,
108
+ model_metadata: DGEBModel,
109
  ):
110
  return TaskResult(
111
  dgeb_version=version("dgeb"),
leaderboard/app.py CHANGED
@@ -1,10 +1,11 @@
1
- import math
2
  import json
 
3
  from pathlib import Path
4
- import gradio as gr
5
  from typing import List
 
 
6
  import pandas as pd
7
- import importlib.util
8
  from pydantic import ValidationError, parse_obj_as
9
 
10
  SIG_FIGS = 4
@@ -24,7 +25,7 @@ spec = importlib.util.spec_from_file_location("tasks", tasks_path)
24
  tasks = importlib.util.module_from_spec(spec)
25
  spec.loader.exec_module(tasks)
26
  TaskResult = tasks.TaskResult
27
- GEBModel = tasks.GEBModel
28
 
29
 
30
  # Assuming the class definitions provided above are complete and imported here
@@ -84,7 +85,7 @@ def load_results() -> List[TaskResult]:
84
 
85
 
86
  def task_results_to_dgeb_score(
87
- model: GEBModel, model_results: List[TaskResult]
88
  ) -> dict:
89
  best_scores_per_task = []
90
  modalities_seen = set()
 
1
+ import importlib.util
2
  import json
3
+ import math
4
  from pathlib import Path
 
5
  from typing import List
6
+
7
+ import gradio as gr
8
  import pandas as pd
 
9
  from pydantic import ValidationError, parse_obj_as
10
 
11
  SIG_FIGS = 4
 
25
  tasks = importlib.util.module_from_spec(spec)
26
  spec.loader.exec_module(tasks)
27
  TaskResult = tasks.TaskResult
28
+ DGEBModel = tasks.DGEBModel
29
 
30
 
31
  # Assuming the class definitions provided above are complete and imported here
 
85
 
86
 
87
  def task_results_to_dgeb_score(
88
+ model: DGEBModel, model_results: List[TaskResult]
89
  ) -> dict:
90
  best_scores_per_task = []
91
  modalities_seen = set()