|
import random, time |
|
|
|
import wandb |
|
|
|
|
|
def train(project="st", entity=None, epochs=10, bar=None): |
|
run = wandb.init( |
|
|
|
project=project, |
|
entity=entity, |
|
|
|
config={ |
|
"learning_rate": 0.02, |
|
"architecture": "CNN", |
|
"dataset": "CIFAR-100", |
|
"epochs": epochs, |
|
}) |
|
|
|
|
|
offset = random.random() / 5 |
|
for epoch in range(1, epochs+1): |
|
acc = 1 - 2 ** -epoch - random.random() / epoch - offset |
|
loss = 2 ** -epoch + random.random() / epoch + offset |
|
|
|
wandb.log({"acc": acc, "loss": loss}) |
|
time.sleep(0.1) |
|
bar.progress(epoch/epochs) |
|
|
|
|
|
wandb.finish() |