--- title: README emoji: 🚀 colorFrom: green colorTo: gray sdk: static pinned: false license: mit ---
[**Nature Chemical Biology Paper**](https://www.nature.com/articles/s41589-022-01131-2) | [**NeurIPS Paper**](https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/4c56ff4ce4aaf9573aa5dff913df997a-Abstract-round1.html) | [**GitHub**](https://github.com/mims-harvard/TDC) | [**Leaderboards**](https://tdcommons.ai/benchmark/overview/) | [**Datasets**](https://tdcommons.ai/overview/) [![Twitter](https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Follow%20%40ProjectTDC)](https://twitter.com/ProjectTDC) Artificial intelligence is poised to enable breakthroughs and discoveries in therapeutic science. Therapeutics Data Commons is a global initiative to access and evaluate artificial intelligence capability across therapeutic modalities and stages of discovery. The Commons is a resource with AI-solvable tasks, AI-ready datasets, and curated benchmarks, providing an ecosystem of tools, libraries, leaderboards, and community resources, including data functions, strategies for systematic model evaluation, meaningful data splits, data processors, and molecule generation oracles.from tdc.single_pred import ADME data = ADME(name = 'HIA_Hou') split = data.get_split(method = 'scaffold') data.get_data(format = 'df')
More information: Therapeutics Commons Slack Workspace, Release News