# import all required libraries after doing research import gradio as gr from PIL import Image from surya.ocr import run_ocr # dedicated GOT_OCR_2.0 for hindi languages from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor from surya.model.recognition.model import load_model as load_rec_model from surya.model.recognition.processor import load_processor as load_rec_processor import re # recognized hindi encoded pattern from transformers import AutoModel, AutoTokenizer import torch import tempfile import os # device = "cuda" device = 'cuda' if torch.cuda.is_available() else 'cpu' print(device) # load_desirable_model got_model_name = 'tdnathmlenthusiast/tester' det_processor, det_model = load_det_processor(), load_det_model() det_model.to(device) rec_model, rec_processor = load_rec_model(), load_rec_processor() rec_model.to(device) # tokenized to extract individual character tokenizer = AutoTokenizer.from_pretrained( got_model_name, trust_remote_code=True, device_map=device, revision = 'main') got_model = AutoModel.from_pretrained( got_model_name, trust_remote_code=True, low_cpu_mem_usage=True, device_map=device, use_safetensors=True) got_model = got_model.eval().to(device) # function to extract hindi & english def extract_hindi(text): # Unicode range for Devanagari script hindi_pattern = re.compile(r'[\u0900-\u097F]+') hindi_words = hindi_pattern.findall(text) return ' '.join(hindi_words) def process_image(image): with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: image.save(temp_file.name) temp_file_path = temp_file.name image = Image.open(temp_file_path) image = image.convert("RGB") langs = ["hi"] surya_predictions = run_ocr( [image], [langs], det_model, det_processor, rec_model, rec_processor) surya_text_list = re.findall(r"text='(.*?)'", str(surya_predictions[0])) surya_text = '\n'.join(surya_text_list) surya_text = extract_hindi(surya_text) got_res = got_model.chat(tokenizer, temp_file_path, ocr_type='ocr') combined_text = f"

Hindi Text (Surya OCR)


{surya_text}

English Text (GOT OCR)


{got_res}" if os.path.exists(temp_file_path): os.remove(temp_file_path) return combined_text # code to search words like documents def highlight_search(text, query): if query: pattern = re.compile(re.escape(query), re.IGNORECASE) highlighted_text = pattern.sub( lambda m: f"{m.group(0)}", text) return highlighted_text return text with gr.Blocks() as ocr_interface: gr.Markdown("# OCR Application for Hindi & English") gr.Markdown( "Upload an image for OCR processing.(Takes a little bit time or sometimes a lot due to the limitation of the resources)") with gr.Row(): with gr.Column(): image_input = gr.Image( type="pil", label="Upload an Image(Hindi/English/Hindi+English)") run_ocr_button = gr.Button("Run OCR") with gr.Column(): output_text = gr.HTML(label="Extracted Text in Hindi & English") query_input = gr.Textbox( label="Search in extracted text", placeholder="Type to search...") search_button = gr.Button("Search") def process_and_display(image): combined_text = process_image(image) return combined_text def search_text(combined_text, query): highlighted = highlight_search(combined_text, query) return highlighted run_ocr_button.click(fn=process_and_display, inputs=image_input, outputs=output_text) search_button.click(fn=search_text, inputs=[ output_text, query_input], outputs=output_text) ocr_interface.launch() # Developed by Tirtha Debnath.