teaevo commited on
Commit
115834e
1 Parent(s): a46b806

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -38
app.py CHANGED
@@ -49,6 +49,7 @@ conn.close()
49
 
50
 
51
  # Create a sample DataFrame with 3,000 records and 20 columns
 
52
  num_records = 3000
53
  num_columns = 20
54
 
@@ -64,7 +65,7 @@ data["year"] = [random.choice(years) for _ in range(num_records)]
64
  data["city"] = [random.choice(cities) for _ in range(num_records)]
65
 
66
  table = pd.DataFrame(data)
67
-
68
  #table = pd.read_csv(csv_file.name, delimiter=",")
69
  #table.fillna(0, inplace=True)
70
  #table = table.astype(str)
@@ -73,7 +74,7 @@ data = {
73
  "year": [1896, 1900, 1904, 2004, 2008, 2012],
74
  "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
75
  }
76
- #table = pd.DataFrame.from_dict(data)
77
 
78
 
79
  # Load the chatbot model
@@ -132,6 +133,7 @@ def sqlquery(input): #, history=[]):
132
  global conversation_history
133
 
134
  #======================================================================
 
135
  batch_size = 10 # Number of records in each batch
136
  num_records = 3000 # Total number of records in the dataset
137
  for start_idx in range(0, num_records, batch_size):
@@ -160,7 +162,7 @@ def sqlquery(input): #, history=[]):
160
  for response in enumerate(responses):
161
  # Update conversation history
162
  conversation_history.append("Bot: " + response)
163
-
164
  '''
165
 
166
  = []
@@ -194,7 +196,7 @@ def sqlquery(input): #, history=[]):
194
  '''
195
 
196
  # ==========================================================================
197
- '''
198
  inputs = [input]
199
  sql_encoding = sql_tokenizer(table=table, query=input, return_tensors="pt")
200
  sql_outputs = sql_model.generate(**sql_encoding)
@@ -203,7 +205,7 @@ def sqlquery(input): #, history=[]):
203
  #history.append((input, sql_response))
204
  conversation_history.append(("User", input))
205
  conversation_history.append(("Bot", sql_response))
206
- '''
207
  # Build conversation string
208
  #conversation = "\n".join([f"User: {user_msg}\nBot: {resp_msg}" for user_msg, resp_msg in conversation_history])
209
  conversation = "\n".join([f"{sender}: {msg}" for sender, msg in conversation_history])
@@ -266,36 +268,3 @@ combine_interface = gr.TabbedInterface(
266
  if __name__ == '__main__':
267
  combine_interface.launch()
268
  #iface.launch(debug=True)
269
-
270
-
271
- '''
272
- batch_size = 10 # Number of records in each batch
273
- num_records = 3000 # Total number of records in the dataset
274
-
275
- for start_idx in range(0, num_records, batch_size):
276
- end_idx = min(start_idx + batch_size, num_records)
277
-
278
- # Get a batch of records
279
- batch_data = dataset[start_idx:end_idx] # Replace with your dataset
280
-
281
- # Tokenize the batch
282
- tokenized_batch = tokenizer.batch_encode_plus(
283
- batch_data, padding=True, truncation=True, return_tensors="pt"
284
- )
285
-
286
- # Perform inference
287
- with torch.no_grad():
288
- output = model.generate(
289
- input_ids=tokenized_batch["input_ids"],
290
- max_length=1024,
291
- pad_token_id=tokenizer.eos_token_id,
292
- )
293
-
294
- # Decode the output and process the responses
295
- responses = [tokenizer.decode(ids, skip_special_tokens=True) for ids in output]
296
-
297
- # Process responses and maintain conversation context
298
- # ...
299
-
300
-
301
- '''
 
49
 
50
 
51
  # Create a sample DataFrame with 3,000 records and 20 columns
52
+ '''
53
  num_records = 3000
54
  num_columns = 20
55
 
 
65
  data["city"] = [random.choice(cities) for _ in range(num_records)]
66
 
67
  table = pd.DataFrame(data)
68
+ '''
69
  #table = pd.read_csv(csv_file.name, delimiter=",")
70
  #table.fillna(0, inplace=True)
71
  #table = table.astype(str)
 
74
  "year": [1896, 1900, 1904, 2004, 2008, 2012],
75
  "city": ["athens", "paris", "st. louis", "athens", "beijing", "london"]
76
  }
77
+ table = pd.DataFrame.from_dict(data)
78
 
79
 
80
  # Load the chatbot model
 
133
  global conversation_history
134
 
135
  #======================================================================
136
+ '''
137
  batch_size = 10 # Number of records in each batch
138
  num_records = 3000 # Total number of records in the dataset
139
  for start_idx in range(0, num_records, batch_size):
 
162
  for response in enumerate(responses):
163
  # Update conversation history
164
  conversation_history.append("Bot: " + response)
165
+ '''
166
  '''
167
 
168
  = []
 
196
  '''
197
 
198
  # ==========================================================================
199
+
200
  inputs = [input]
201
  sql_encoding = sql_tokenizer(table=table, query=input, return_tensors="pt")
202
  sql_outputs = sql_model.generate(**sql_encoding)
 
205
  #history.append((input, sql_response))
206
  conversation_history.append(("User", input))
207
  conversation_history.append(("Bot", sql_response))
208
+
209
  # Build conversation string
210
  #conversation = "\n".join([f"User: {user_msg}\nBot: {resp_msg}" for user_msg, resp_msg in conversation_history])
211
  conversation = "\n".join([f"{sender}: {msg}" for sender, msg in conversation_history])
 
268
  if __name__ == '__main__':
269
  combine_interface.launch()
270
  #iface.launch(debug=True)