Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import (
|
2 |
+
AutoConfig,
|
3 |
+
AutoModelForQuestionAnswering,
|
4 |
+
AutoTokenizer,
|
5 |
+
squad_convert_examples_to_features
|
6 |
+
)
|
7 |
+
|
8 |
+
from transformers.data.processors.squad import SquadResult, SquadV2Processor, SquadExample
|
9 |
+
from transformers.data.metrics.squad_metrics import compute_predictions_logits
|
10 |
+
import streamlit as st
|
11 |
+
import gradio as gr
|
12 |
+
import json
|
13 |
+
import torch
|
14 |
+
import time
|
15 |
+
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
|
16 |
+
|
17 |
+
model_checkpoint = "akdeniz27/roberta-base-cuad"
|
18 |
+
st.sidebar.write("Model: akdeniz27/roberta-base-cuad")
|
19 |
+
st.sidebar.write("Project: https://www.atticusprojectai.org/cuad")
|
20 |
+
st.sidebar.write("Git Hub: https://github.com/TheAtticusProject/cuad")
|
21 |
+
st.sidebar.write("CUAD Dataset: https://huggingface.co/datasets/cuad")
|
22 |
+
|
23 |
+
@st.cache(allow_output_mutation=True)
|
24 |
+
def load_model():
|
25 |
+
model = AutoModelForQuestionAnswering.from_pretrained(model_checkpoint)
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint , use_fast=False)
|
27 |
+
return model, tokenizer
|
28 |
+
|
29 |
+
@st.cache(allow_output_mutation=True)
|
30 |
+
def load_questions():
|
31 |
+
with open('test.json') as json_file:
|
32 |
+
data = json.load(json_file)
|
33 |
+
questions = []
|
34 |
+
for i, q in enumerate(data['data'][0]['paragraphs'][0]['qas']):
|
35 |
+
question = data['data'][0]['paragraphs'][0]['qas'][i]['question']
|
36 |
+
questions.append(question)
|
37 |
+
return questions
|
38 |
+
|
39 |
+
@st.cache(allow_output_mutation=True)
|
40 |
+
def load_contracts():
|
41 |
+
with open('test.json') as json_file:
|
42 |
+
data = json.load(json_file)
|
43 |
+
contracts = []
|
44 |
+
for i, q in enumerate(data['data']):
|
45 |
+
contract = ' '.join(data['data'][i]['paragraphs'][0]['context'].split())
|
46 |
+
contracts.append(contract)
|
47 |
+
return contracts
|
48 |
+
|
49 |
+
model, tokenizer = load_model()
|
50 |
+
questions = load_questions()
|
51 |
+
contracts = load_contracts()
|
52 |
+
contract = contracts[0]
|
53 |
+
|
54 |
+
st.header("Contract Understanding Atticus Dataset (CUAD) Demo")
|
55 |
+
st.write("Based on https://github.com/marshmellow77/cuad-demo")
|
56 |
+
|
57 |
+
selected_question = st.selectbox('Choose one of the 41 queries from the CUAD dataset:', questions)
|
58 |
+
question_set = [questions[0], selected_question]
|
59 |
+
contract_type = st.radio("Select Contract", ("Sample Contract", "New Contract"))
|
60 |
+
|
61 |
+
if contract_type == "Sample Contract":
|
62 |
+
sample_contract_num = st.slider("Select Sample Contract #")
|
63 |
+
contract = contracts[sample_contract_num]
|
64 |
+
with st.expander(f"Sample Contract #{sample_contract_num}"):
|
65 |
+
st.write(contract)
|
66 |
+
else:
|
67 |
+
contract = st.text_area("Input New Contract", "", height=256)
|
68 |
+
Run_Button = st.button("Run", key=None)
|
69 |
+
if Run_Button == True and not len(contract)==0 and not len(question_set)==0:
|
70 |
+
predictions = run_prediction(question_set, contract, 'akdeniz27/roberta-base-cuad')
|
71 |
+
|
72 |
+
for i, p in enumerate(predictions):
|
73 |
+
if i != 0: st.write(f"Question: {question_set[int(p)]}\n\nAnswer: {predictions[p]}\n\n")
|
74 |
+
|
75 |
+
|
76 |
+
def run_prediction(question_texts, context_text, model_path):
|
77 |
+
max_seq_length = 512
|
78 |
+
doc_stride = 256
|
79 |
+
n_best_size = 1
|
80 |
+
max_query_length = 64
|
81 |
+
max_answer_length = 512
|
82 |
+
do_lower_case = False
|
83 |
+
null_score_diff_threshold = 0.0
|
84 |
+
|
85 |
+
def to_list(tensor):
|
86 |
+
return tensor.detach().cpu().tolist()
|
87 |
+
config_class, model_class, tokenizer_class = (
|
88 |
+
AutoConfig, AutoModelForQuestionAnswering, AutoTokenizer)
|
89 |
+
config = config_class.from_pretrained(model_path)
|
90 |
+
tokenizer = tokenizer_class.from_pretrained(
|
91 |
+
model_path, do_lower_case=True, use_fast=False)
|
92 |
+
model = model_class.from_pretrained(model_path, config=config)
|
93 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
94 |
+
model.to(device)
|
95 |
+
processor = SquadV2Processor()
|
96 |
+
examples = []
|
97 |
+
for i, question_text in enumerate(question_texts):
|
98 |
+
example = SquadExample(
|
99 |
+
qas_id=str(i),
|
100 |
+
question_text=question_text,
|
101 |
+
context_text=context_text,
|
102 |
+
answer_text=None,
|
103 |
+
start_position_character=None,
|
104 |
+
title="Predict",
|
105 |
+
answers=None,
|
106 |
+
)
|
107 |
+
examples.append(example)
|
108 |
+
features, dataset = squad_convert_examples_to_features(
|
109 |
+
examples=examples,
|
110 |
+
tokenizer=tokenizer,
|
111 |
+
max_seq_length=max_seq_length,
|
112 |
+
doc_stride=doc_stride,
|
113 |
+
max_query_length=max_query_length,
|
114 |
+
is_training=False,
|
115 |
+
return_dataset="pt",
|
116 |
+
threads=1,
|
117 |
+
)
|
118 |
+
eval_sampler = SequentialSampler(dataset)
|
119 |
+
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=10)
|
120 |
+
all_results = []
|
121 |
+
for batch in eval_dataloader:
|
122 |
+
model.eval()
|
123 |
+
batch = tuple(t.to(device) for t in batch)
|
124 |
+
with torch.no_grad():
|
125 |
+
inputs = {
|
126 |
+
"input_ids": batch[0],
|
127 |
+
"attention_mask": batch[1],
|
128 |
+
"token_type_ids": batch[2],
|
129 |
+
}
|
130 |
+
example_indices = batch[3]
|
131 |
+
outputs = model(**inputs)
|
132 |
+
for i, example_index in enumerate(example_indices):
|
133 |
+
eval_feature = features[example_index.item()]
|
134 |
+
unique_id = int(eval_feature.unique_id)
|
135 |
+
output = [to_list(output[i]) for output in outputs.to_tuple()]
|
136 |
+
start_logits, end_logits = output
|
137 |
+
result = SquadResult(unique_id, start_logits, end_logits)
|
138 |
+
all_results.append(result)
|
139 |
+
final_predictions = compute_predictions_logits(
|
140 |
+
all_examples=examples,
|
141 |
+
all_features=features,
|
142 |
+
all_results=all_results,
|
143 |
+
n_best_size=n_best_size,
|
144 |
+
max_answer_length=max_answer_length,
|
145 |
+
do_lower_case=do_lower_case,
|
146 |
+
output_prediction_file=None,
|
147 |
+
output_nbest_file=None,
|
148 |
+
output_null_log_odds_file=None,
|
149 |
+
verbose_logging=False,
|
150 |
+
version_2_with_negative=True,
|
151 |
+
null_score_diff_threshold=null_score_diff_threshold,
|
152 |
+
tokenizer=tokenizer
|
153 |
+
)
|
154 |
+
return final_predictions
|