Spaces:
Runtime error
Runtime error
def NAME_TO_WIDTH(name): | |
map = { | |
'mn04': 0.4, | |
'mn05': 0.5, | |
'mn10': 1.0, | |
'mn20': 2.0, | |
'mn30': 3.0, | |
'mn40': 4.0 | |
} | |
try: | |
w = map[name[:4]] | |
except: | |
w = 1.0 | |
return w | |
import csv | |
# Load label | |
with open('efficientat/metadata/class_labels_indices.csv', 'r') as f: | |
reader = csv.reader(f, delimiter=',') | |
lines = list(reader) | |
labels = [] | |
ids = [] # Each label has a unique id such as "/m/068hy" | |
for i1 in range(1, len(lines)): | |
id = lines[i1][1] | |
label = lines[i1][2] | |
ids.append(id) | |
labels.append(label) | |
classes_num = len(labels) | |
import numpy as np | |
def exp_warmup_linear_down(warmup, rampdown_length, start_rampdown, last_value): | |
rampup = exp_rampup(warmup) | |
rampdown = linear_rampdown(rampdown_length, start_rampdown, last_value) | |
def wrapper(epoch): | |
return rampup(epoch) * rampdown(epoch) | |
return wrapper | |
def exp_rampup(rampup_length): | |
"""Exponential rampup from https://arxiv.org/abs/1610.02242""" | |
def wrapper(epoch): | |
if epoch < rampup_length: | |
epoch = np.clip(epoch, 0.5, rampup_length) | |
phase = 1.0 - epoch / rampup_length | |
return float(np.exp(-5.0 * phase * phase)) | |
else: | |
return 1.0 | |
return wrapper | |
def linear_rampdown(rampdown_length, start=0, last_value=0): | |
def wrapper(epoch): | |
if epoch <= start: | |
return 1. | |
elif epoch - start < rampdown_length: | |
return last_value + (1. - last_value) * (rampdown_length - epoch + start) / rampdown_length | |
else: | |
return last_value | |
return wrapper | |
import torch | |
def mixup(size, alpha): | |
rn_indices = torch.randperm(size) | |
lambd = np.random.beta(alpha, alpha, size).astype(np.float32) | |
lambd = np.concatenate([lambd[:, None], 1 - lambd[:, None]], 1).max(1) | |
lam = torch.FloatTensor(lambd) | |
return rn_indices, lam | |
from torch.distributions.beta import Beta | |
def mixstyle(x, p=0.4, alpha=0.4, eps=1e-6, mix_labels=False): | |
if np.random.rand() > p: | |
return x | |
batch_size = x.size(0) | |
# changed from dim=[2,3] to dim=[1,3] - from channel-wise statistics to frequency-wise statistics | |
f_mu = x.mean(dim=[1, 3], keepdim=True) | |
f_var = x.var(dim=[1, 3], keepdim=True) | |
f_sig = (f_var + eps).sqrt() # compute instance standard deviation | |
f_mu, f_sig = f_mu.detach(), f_sig.detach() # block gradients | |
x_normed = (x - f_mu) / f_sig # normalize input | |
lmda = Beta(alpha, alpha).sample((batch_size, 1, 1, 1)).to(x.device) # sample instance-wise convex weights | |
perm = torch.randperm(batch_size).to(x.device) # generate shuffling indices | |
f_mu_perm, f_sig_perm = f_mu[perm], f_sig[perm] # shuffling | |
mu_mix = f_mu * lmda + f_mu_perm * (1 - lmda) # generate mixed mean | |
sig_mix = f_sig * lmda + f_sig_perm * (1 - lmda) # generate mixed standard deviation | |
x = x_normed * sig_mix + mu_mix # denormalize input using the mixed statistics | |
if mix_labels: | |
return x, perm, lmda | |
return x | |