tebakaja's picture
[ update ]: remove asyncio features
ea238c4
raw
history blame
1.64 kB
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import GRU, LSTM, Dense, Dropout
from warnings import filterwarnings
filterwarnings('ignore')
""" GRU (Gated Recurrent Units) Model """
def gru_model(input_shape):
cdef object model = Sequential([
GRU(50, return_sequences = True, input_shape = input_shape),
Dropout(0.2),
GRU(50, return_sequences = True),
Dropout(0.2),
GRU(50, return_sequences = True),
Dropout(0.2),
GRU(50, return_sequences = False),
Dropout(0.2),
Dense(units = 1)
])
model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
return model
""" LSTM (Long Short-Term Memory) Model """
def lstm_model(input_shape):
cdef object model = Sequential([
LSTM(50, return_sequences = True, input_shape = input_shape),
Dropout(0.2),
LSTM(50, return_sequences = True),
Dropout(0.2),
LSTM(50, return_sequences = True),
Dropout(0.2),
LSTM(50, return_sequences = False),
Dropout(0.2),
Dense(units = 1)
])
model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
return model
"""
LSTM (Long Short-Term Memory) and
GRU (Gated Recurrent Units) Model
"""
def lstm_gru_model(input_shape):
cdef object model = Sequential([
LSTM(50, return_sequences = True, input_shape = input_shape),
Dropout(0.2),
GRU(50, return_sequences = True),
Dropout(0.2),
LSTM(50, return_sequences = True),
Dropout(0.2),
GRU(50, return_sequences = False),
Dropout(0.2),
Dense(units = 1)
])
model.compile(optimizer = 'nadam', loss = 'mean_squared_error')
return model