File size: 8,176 Bytes
0c14fd5
bac0d32
61bd18b
6ca2579
61bd18b
ab7be96
 
 
374c3a9
d6e8791
7d0d1f0
8d23ca8
ab7be96
8d23ca8
07c6a04
a28e78a
ab7be96
a28e78a
07c6a04
 
 
ab7be96
07c6a04
ab7be96
07c6a04
ab7be96
 
07c6a04
ab7be96
 
07c6a04
bac0d32
efc27db
 
 
ab7be96
61bd18b
 
 
ab7be96
 
 
 
 
 
 
 
 
 
 
 
 
a28e78a
 
 
ab7be96
 
 
 
a28e78a
ab7be96
a28e78a
ab7be96
 
 
 
 
 
 
 
 
 
a28e78a
ab7be96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efc27db
ab7be96
 
 
 
efc27db
 
bac0d32
ab7be96
 
 
 
bac0d32
07c6a04
 
 
 
 
 
 
 
 
ab7be96
07c6a04
 
 
ab7be96
07c6a04
 
 
 
 
ab7be96
07c6a04
 
 
 
 
 
 
 
 
 
 
 
 
 
efc27db
b1ae694
 
 
efc27db
 
b1ae694
 
b652dd0
 
0a41bc2
b652dd0
 
 
 
 
b1ae694
0a41bc2
b1ae694
b652dd0
 
0a41bc2
b1ae694
0a41bc2
b652dd0
0a41bc2
 
efc27db
0a41bc2
 
 
 
07c6a04
 
 
 
 
 
 
b652dd0
07c6a04
 
 
 
 
 
 
 
ab7be96
 
07c6a04
ab7be96
07c6a04
9b08739
 
ab7be96
 
9b08739
ab7be96
9b08739
 
07c6a04
ab7be96
 
07c6a04
 
 
a28e78a
07c6a04
 
ab7be96
a28e78a
 
 
 
07c6a04
 
 
 
ab7be96
 
 
 
 
 
07c6a04
ab7be96
9fc5ec2
b71d548
ab7be96
b71d548
05576af
 
ab7be96
9fc5ec2
05576af
 
ab7be96
9fc5ec2
ab7be96
07c6a04
 
 
 
 
ab7be96
52a6c7f
debb23f
a6d5f16
a28e78a
ab7be96
14a04f5
 
07c6a04
eef733b
debb23f
a6d5f16
a28e78a
 
 
 
 
 
 
 
 
ab7be96
14a04f5
 
debb23f
8d23ca8
61bd18b
0af4f53
efc27db
07c6a04
bac0d32
ab7be96
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os

os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.getcwd(), ".tmp_outputs")
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"

import uuid

import GPUtil
import gradio as gr
import psutil
import spaces

from videosys import CogVideoXConfig, CogVideoXPABConfig, VideoSysEngine


def load_model(model_name, enable_video_sys=False, pab_threshold=[100, 850], pab_range=2):
    pab_config = CogVideoXPABConfig(spatial_threshold=pab_threshold, spatial_range=pab_range)
    config = CogVideoXConfig(model_name, enable_pab=enable_video_sys, pab_config=pab_config)
    engine = VideoSysEngine(config)
    return engine


def generate(engine, prompt, num_inference_steps=50, guidance_scale=6.0):
    video = engine.generate(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).video[0]

    unique_filename = f"{uuid.uuid4().hex}.mp4"
    output_path = os.path.join("./.tmp_outputs", unique_filename)

    engine.save_video(video, output_path)
    return output_path


def get_server_status():
    cpu_percent = psutil.cpu_percent()
    memory = psutil.virtual_memory()
    disk = psutil.disk_usage("/")
    gpus = GPUtil.getGPUs()
    gpu_info = []
    for gpu in gpus:
        gpu_info.append(
            {
                "id": gpu.id,
                "name": gpu.name,
                "load": f"{gpu.load*100:.1f}%",
                "memory_used": f"{gpu.memoryUsed}MB",
                "memory_total": f"{gpu.memoryTotal}MB",
            }
        )

    return {"cpu": f"{cpu_percent}%", "memory": f"{memory.percent}%", "disk": f"{disk.percent}%", "gpu": gpu_info}


@spaces.GPU(duration=400)
def generate_vanilla(model_name, prompt, num_inference_steps, guidance_scale, progress=gr.Progress(track_tqdm=True)):
    engine = load_model(model_name)
    video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
    return video_path


@spaces.GPU(duration=360)
def generate_vs(
    model_name,
    prompt,
    num_inference_steps,
    guidance_scale,
    threshold_start,
    threshold_end,
    gap,
    progress=gr.Progress(track_tqdm=True),
):
    threshold = [int(threshold_end), int(threshold_start)]
    gap = int(gap)
    engine = load_model(model_name, enable_video_sys=True, pab_threshold=threshold, pab_range=gap)
    video_path = generate(engine, prompt, num_inference_steps, guidance_scale)
    return video_path


def get_server_status():
    cpu_percent = psutil.cpu_percent()
    memory = psutil.virtual_memory()
    disk = psutil.disk_usage("/")
    try:
        gpus = GPUtil.getGPUs()
        if gpus:
            gpu = gpus[0]
            gpu_memory = f"{gpu.memoryUsed}/{gpu.memoryTotal}MB ({gpu.memoryUtil*100:.1f}%)"
        else:
            gpu_memory = "No GPU found"
    except:
        gpu_memory = "GPU information unavailable"

    return {
        "cpu": f"{cpu_percent}%",
        "memory": f"{memory.percent}%",
        "disk": f"{disk.percent}%",
        "gpu_memory": gpu_memory,
    }


def update_server_status():
    status = get_server_status()
    return (status["cpu"], status["memory"], status["disk"], status["gpu_memory"])


css = """
body {
    font-family: Arial, sans-serif;
    line-height: 1.6;
    color: #333;
    margin: 0 auto;
    padding: 20px;
}


.container {
    display: flex;
    flex-direction: column;
    gap: 10px;
}

.row {
    display: flex;
    flex-wrap: wrap;
    gap: 10px;
}

.column {
    flex: 1;
    min-width: 0;
}

.video-output {
    width: 100%;
    max-width: 720px;
    height: auto;
    margin: 0 auto;
}

.server-status {
    margin-top: 5px;
    padding: 5px;
    font-size: 0.8em;
}
.server-status h4 {
    margin: 0 0 3px 0;
    font-size: 0.9em;
}
.server-status .row {
    margin-bottom: 2px;
}
.server-status .textbox {
    min-height: unset !important;
}
.server-status .textbox input {
    padding: 1px 5px !important;
    height: 20px !important;
    font-size: 0.9em !important;
}
.server-status .textbox label {
    margin-bottom: 0 !important;
    font-size: 0.9em !important;
    line-height: 1.2 !important;
}
.server-status .textbox {
    gap: 0 !important;
}
.server-status .textbox input {
    margin-top: -2px !important;
}

@media (max-width: 768px) {
    .row {
        flex-direction: column;
    }
    .column {
        width: 100%;
    }
}
    .video-output {
        width: 100%;
        height: auto;
    }
}
"""

with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
    <div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
        VideoSys for CogVideoX🤗
    </div>
    <div style="text-align: center; font-size: 15px;">
        🌐 Github: <a href="https://github.com/NUS-HPC-AI-Lab/VideoSys">https://github.com/NUS-HPC-AI-Lab/VideoSys</a><br>

        ⚠️ This demo is for academic research and experiential use only.
        Users should strictly adhere to local laws and ethics.<br>

        💡 This demo only demonstrates single-device inference. To experience the full power of VideoSys, please deploy it with multiple devices.<br><br>
        </div>
    </div>
    """
    )

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt (Less than 200 Words)", value="Sunset over the sea.", lines=3)

            with gr.Column():
                gr.Markdown("**Generation Parameters**<br>")
                with gr.Row():
                    model_name = gr.Dropdown(
                        ["THUDM/CogVideoX-2b", "THUDM/CogVideoX-5b"], label="Model Type", value="THUDM/CogVideoX-2b"
                    )
                with gr.Row():
                    num_inference_steps = gr.Number(label="Inference Steps", value=50)
                    guidance_scale = gr.Number(label="Guidance Scale", value=6.0)
                with gr.Row():
                    pab_range = gr.Number(
                        label="PAB Broadcast Range", value=2, precision=0, info="Broadcast timesteps range."
                    )
                    pab_threshold_start = gr.Number(label="PAB Start Timestep", value=850, info="Start from step 1000.")
                    pab_threshold_end = gr.Number(label="PAB End Timestep", value=100, info="End at step 0.")
                with gr.Row():
                    generate_button_vs = gr.Button("⚡️ Generate Video with VideoSys (Faster)")
                    generate_button = gr.Button("🎬 Generate Video (Original)")
                with gr.Column(elem_classes="server-status"):
                    gr.Markdown("#### Server Status")

                    with gr.Row():
                        cpu_status = gr.Textbox(label="CPU", scale=1)
                        memory_status = gr.Textbox(label="Memory", scale=1)

                    with gr.Row():
                        disk_status = gr.Textbox(label="Disk", scale=1)
                        gpu_status = gr.Textbox(label="GPU Memory", scale=1)

                    with gr.Row():
                        refresh_button = gr.Button("Refresh")

        with gr.Column():
            with gr.Row():
                video_output_vs = gr.Video(label="CogVideoX with VideoSys", width=720, height=480)
            with gr.Row():
                video_output = gr.Video(label="CogVideoX", width=720, height=480)

    generate_button.click(
        generate_vanilla,
        inputs=[model_name, prompt, num_inference_steps, guidance_scale],
        outputs=[video_output],
        concurrency_id="gen",
        concurrency_limit=1,
    )

    generate_button_vs.click(
        generate_vs,
        inputs=[
            model_name,
            prompt,
            num_inference_steps,
            guidance_scale,
            pab_threshold_start,
            pab_threshold_end,
            pab_range,
        ],
        outputs=[video_output_vs],
        concurrency_id="gen",
        concurrency_limit=1,
    )

    refresh_button.click(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status])
    demo.load(update_server_status, outputs=[cpu_status, memory_status, disk_status, gpu_status], every=1)

if __name__ == "__main__":
    demo.queue(max_size=10, default_concurrency_limit=1)
    demo.launch()