Spaces:
Sleeping
Sleeping
# Adapted from Open-Sora-Plan | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# Open-Sora-Plan: https://github.com/PKU-YuanGroup/Open-Sora-Plan | |
# -------------------------------------------------------- | |
import json | |
import os | |
from dataclasses import dataclass | |
from functools import partial | |
from importlib import import_module | |
from typing import Any, Callable, Dict, Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | |
from diffusers.models.attention_processor import ( | |
AttnAddedKVProcessor, | |
AttnAddedKVProcessor2_0, | |
AttnProcessor, | |
CustomDiffusionAttnProcessor, | |
CustomDiffusionAttnProcessor2_0, | |
CustomDiffusionXFormersAttnProcessor, | |
LoRAAttnAddedKVProcessor, | |
LoRAAttnProcessor, | |
LoRAAttnProcessor2_0, | |
LoRAXFormersAttnProcessor, | |
SlicedAttnAddedKVProcessor, | |
SlicedAttnProcessor, | |
SpatialNorm, | |
XFormersAttnAddedKVProcessor, | |
XFormersAttnProcessor, | |
) | |
from diffusers.models.embeddings import SinusoidalPositionalEmbedding, TimestepEmbedding, Timesteps | |
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormZero | |
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_xformers_available | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from einops import rearrange, repeat | |
from torch import nn | |
from videosys.core.comm import ( | |
all_to_all_with_pad, | |
gather_sequence, | |
get_spatial_pad, | |
get_temporal_pad, | |
set_spatial_pad, | |
set_temporal_pad, | |
split_sequence, | |
) | |
from videosys.core.pab_mgr import ( | |
enable_pab, | |
get_mlp_output, | |
if_broadcast_cross, | |
if_broadcast_mlp, | |
if_broadcast_spatial, | |
if_broadcast_temporal, | |
save_mlp_output, | |
) | |
from videosys.core.parallel_mgr import ( | |
enable_sequence_parallel, | |
get_cfg_parallel_group, | |
get_cfg_parallel_size, | |
get_sequence_parallel_group, | |
) | |
from videosys.utils.logging import logger | |
from videosys.utils.utils import batch_func | |
if is_xformers_available(): | |
import xformers | |
import xformers.ops | |
else: | |
xformers = None | |
SPATIAL_LIST = [] | |
TEMPROAL_LIST = [] | |
CROSS_LIST = [] | |
def get_2d_sincos_pos_embed( | |
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16 | |
): | |
""" | |
grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or | |
[1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) | |
""" | |
if isinstance(grid_size, int): | |
grid_size = (grid_size, grid_size) | |
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale | |
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale | |
grid = np.meshgrid(grid_w, grid_h) # here w goes first | |
grid = np.stack(grid, axis=0) | |
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]]) | |
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | |
if cls_token and extra_tokens > 0: | |
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0) | |
return pos_embed | |
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | |
if embed_dim % 2 != 0: | |
raise ValueError("embed_dim must be divisible by 2") | |
# use half of dimensions to encode grid_h | |
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2) | |
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2) | |
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D) | |
return emb | |
def get_1d_sincos_pos_embed(embed_dim, length, interpolation_scale=1.0, base_size=16): | |
pos = torch.arange(0, length).unsqueeze(1) / interpolation_scale | |
pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, pos) | |
return pos_embed | |
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
""" | |
embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) | |
""" | |
if embed_dim % 2 != 0: | |
raise ValueError("embed_dim must be divisible by 2") | |
omega = np.arange(embed_dim // 2, dtype=np.float64) | |
omega /= embed_dim / 2.0 | |
omega = 1.0 / 10000**omega # (D/2,) | |
pos = pos.reshape(-1) # (M,) | |
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product | |
emb_sin = np.sin(out) # (M, D/2) | |
emb_cos = np.cos(out) # (M, D/2) | |
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D) | |
return emb | |
class RoPE2D(torch.nn.Module): | |
def __init__(self, freq=10000.0, F0=1.0, scaling_factor=1.0): | |
super().__init__() | |
self.base = freq | |
self.F0 = F0 | |
self.scaling_factor = scaling_factor | |
self.cache = {} | |
def get_cos_sin(self, D, seq_len, device, dtype): | |
if (D, seq_len, device, dtype) not in self.cache: | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) | |
t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) | |
freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) | |
freqs = torch.cat((freqs, freqs), dim=-1) | |
cos = freqs.cos() # (Seq, Dim) | |
sin = freqs.sin() | |
self.cache[D, seq_len, device, dtype] = (cos, sin) | |
return self.cache[D, seq_len, device, dtype] | |
def rotate_half(x): | |
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rope1d(self, tokens, pos1d, cos, sin): | |
assert pos1d.ndim == 2 | |
cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :] | |
sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :] | |
return (tokens * cos) + (self.rotate_half(tokens) * sin) | |
def forward(self, tokens, positions): | |
""" | |
input: | |
* tokens: batch_size x nheads x ntokens x dim | |
* positions: batch_size x ntokens x 2 (y and x position of each token) | |
output: | |
* tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim) | |
""" | |
assert tokens.size(3) % 2 == 0, "number of dimensions should be a multiple of two" | |
D = tokens.size(3) // 2 | |
assert positions.ndim == 3 and positions.shape[-1] == 2 # Batch, Seq, 2 | |
cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype) | |
# split features into two along the feature dimension, and apply rope1d on each half | |
y, x = tokens.chunk(2, dim=-1) | |
y = self.apply_rope1d(y, positions[:, :, 0], cos, sin) | |
x = self.apply_rope1d(x, positions[:, :, 1], cos, sin) | |
tokens = torch.cat((y, x), dim=-1) | |
return tokens | |
class LinearScalingRoPE2D(RoPE2D): | |
"""Code from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L148""" | |
def forward(self, tokens, positions): | |
# difference to the original RoPE: a scaling factor is aplied to the position ids | |
dtype = positions.dtype | |
positions = positions.float() / self.scaling_factor | |
positions = positions.to(dtype) | |
tokens = super().forward(tokens, positions) | |
return tokens | |
class RoPE1D(torch.nn.Module): | |
def __init__(self, freq=10000.0, F0=1.0, scaling_factor=1.0): | |
super().__init__() | |
self.base = freq | |
self.F0 = F0 | |
self.scaling_factor = scaling_factor | |
self.cache = {} | |
def get_cos_sin(self, D, seq_len, device, dtype): | |
if (D, seq_len, device, dtype) not in self.cache: | |
inv_freq = 1.0 / (self.base ** (torch.arange(0, D, 2).float().to(device) / D)) | |
t = torch.arange(seq_len, device=device, dtype=inv_freq.dtype) | |
freqs = torch.einsum("i,j->ij", t, inv_freq).to(dtype) | |
freqs = torch.cat((freqs, freqs), dim=-1) | |
cos = freqs.cos() # (Seq, Dim) | |
sin = freqs.sin() | |
self.cache[D, seq_len, device, dtype] = (cos, sin) | |
return self.cache[D, seq_len, device, dtype] | |
def rotate_half(x): | |
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def apply_rope1d(self, tokens, pos1d, cos, sin): | |
assert pos1d.ndim == 2 | |
cos = torch.nn.functional.embedding(pos1d, cos)[:, None, :, :] | |
sin = torch.nn.functional.embedding(pos1d, sin)[:, None, :, :] | |
return (tokens * cos) + (self.rotate_half(tokens) * sin) | |
def forward(self, tokens, positions): | |
""" | |
input: | |
* tokens: batch_size x nheads x ntokens x dim | |
* positions: batch_size x ntokens (t position of each token) | |
output: | |
* tokens after appplying RoPE2D (batch_size x nheads x ntokens x dim) | |
""" | |
D = tokens.size(3) | |
assert positions.ndim == 2 # Batch, Seq | |
cos, sin = self.get_cos_sin(D, int(positions.max()) + 1, tokens.device, tokens.dtype) | |
tokens = self.apply_rope1d(tokens, positions, cos, sin) | |
return tokens | |
class LinearScalingRoPE1D(RoPE1D): | |
"""Code from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L148""" | |
def forward(self, tokens, positions): | |
# difference to the original RoPE: a scaling factor is aplied to the position ids | |
dtype = positions.dtype | |
positions = positions.float() / self.scaling_factor | |
positions = positions.to(dtype) | |
tokens = super().forward(tokens, positions) | |
return tokens | |
class PositionGetter2D(object): | |
"""return positions of patches""" | |
def __init__(self): | |
self.cache_positions = {} | |
def __call__(self, b, h, w, device): | |
if not (h, w) in self.cache_positions: | |
x = torch.arange(w, device=device) | |
y = torch.arange(h, device=device) | |
self.cache_positions[h, w] = torch.cartesian_prod(y, x) # (h, w, 2) | |
pos = self.cache_positions[h, w].view(1, h * w, 2).expand(b, -1, 2).clone() | |
return pos | |
class PositionGetter1D(object): | |
"""return positions of patches""" | |
def __init__(self): | |
self.cache_positions = {} | |
def __call__(self, b, l, device): | |
if not (l) in self.cache_positions: | |
x = torch.arange(l, device=device) | |
self.cache_positions[l] = x # (l, ) | |
pos = self.cache_positions[l].view(1, l).expand(b, -1).clone() | |
return pos | |
class CombinedTimestepSizeEmbeddings(nn.Module): | |
""" | |
For PixArt-Alpha. | |
Reference: | |
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29 | |
""" | |
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False): | |
super().__init__() | |
self.outdim = size_emb_dim | |
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | |
self.use_additional_conditions = use_additional_conditions | |
if use_additional_conditions: | |
self.use_additional_conditions = True | |
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) | |
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) | |
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim) | |
def apply_condition(self, size: torch.Tensor, batch_size: int, embedder: nn.Module): | |
if size.ndim == 1: | |
size = size[:, None] | |
if size.shape[0] != batch_size: | |
size = size.repeat(batch_size // size.shape[0], 1) | |
if size.shape[0] != batch_size: | |
raise ValueError(f"`batch_size` should be {size.shape[0]} but found {batch_size}.") | |
current_batch_size, dims = size.shape[0], size.shape[1] | |
size = size.reshape(-1) | |
size_freq = self.additional_condition_proj(size).to(size.dtype) | |
size_emb = embedder(size_freq) | |
size_emb = size_emb.reshape(current_batch_size, dims * self.outdim) | |
return size_emb | |
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype): | |
timesteps_proj = self.time_proj(timestep) | |
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) | |
if self.use_additional_conditions: | |
resolution = self.apply_condition(resolution, batch_size=batch_size, embedder=self.resolution_embedder) | |
aspect_ratio = self.apply_condition( | |
aspect_ratio, batch_size=batch_size, embedder=self.aspect_ratio_embedder | |
) | |
conditioning = timesteps_emb + torch.cat([resolution, aspect_ratio], dim=1) | |
else: | |
conditioning = timesteps_emb | |
return conditioning | |
class CaptionProjection(nn.Module): | |
""" | |
Projects caption embeddings. Also handles dropout for classifier-free guidance. | |
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py | |
""" | |
def __init__(self, in_features, hidden_size, num_tokens=120): | |
super().__init__() | |
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True) | |
self.act_1 = nn.GELU(approximate="tanh") | |
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True) | |
self.register_buffer("y_embedding", nn.Parameter(torch.randn(num_tokens, in_features) / in_features**0.5)) | |
def forward(self, caption, force_drop_ids=None): | |
hidden_states = self.linear_1(caption) | |
hidden_states = self.act_1(hidden_states) | |
hidden_states = self.linear_2(hidden_states) | |
return hidden_states | |
class PatchEmbed(nn.Module): | |
"""2D Image to Patch Embedding""" | |
def __init__( | |
self, | |
height=224, | |
width=224, | |
patch_size=16, | |
in_channels=3, | |
embed_dim=768, | |
layer_norm=False, | |
flatten=True, | |
bias=True, | |
interpolation_scale=1, | |
): | |
super().__init__() | |
num_patches = (height // patch_size) * (width // patch_size) | |
self.flatten = flatten | |
self.layer_norm = layer_norm | |
self.proj = nn.Conv2d( | |
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias | |
) | |
if layer_norm: | |
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6) | |
else: | |
self.norm = None | |
self.patch_size = patch_size | |
# See: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L161 | |
self.height, self.width = height // patch_size, width // patch_size | |
self.base_size = height // patch_size | |
self.interpolation_scale = interpolation_scale | |
pos_embed = get_2d_sincos_pos_embed( | |
embed_dim, int(num_patches**0.5), base_size=self.base_size, interpolation_scale=self.interpolation_scale | |
) | |
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False) | |
def forward(self, latent): | |
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size | |
latent = self.proj(latent) | |
if self.flatten: | |
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC | |
if self.layer_norm: | |
latent = self.norm(latent) | |
# Interpolate positional embeddings if needed. | |
# (For PixArt-Alpha: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L162C151-L162C160) | |
if self.height != height or self.width != width: | |
# raise ValueError | |
pos_embed = get_2d_sincos_pos_embed( | |
embed_dim=self.pos_embed.shape[-1], | |
grid_size=(height, width), | |
base_size=self.base_size, | |
interpolation_scale=self.interpolation_scale, | |
) | |
pos_embed = torch.from_numpy(pos_embed) | |
pos_embed = pos_embed.float().unsqueeze(0).to(latent.device) | |
else: | |
pos_embed = self.pos_embed | |
return (latent + pos_embed).to(latent.dtype) | |
class Attention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): | |
The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): | |
The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): | |
The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
upcast_attention (`bool`, *optional*, defaults to False): | |
Set to `True` to upcast the attention computation to `float32`. | |
upcast_softmax (`bool`, *optional*, defaults to False): | |
Set to `True` to upcast the softmax computation to `float32`. | |
cross_attention_norm (`str`, *optional*, defaults to `None`): | |
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. | |
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use for the group norm in the cross attention. | |
added_kv_proj_dim (`int`, *optional*, defaults to `None`): | |
The number of channels to use for the added key and value projections. If `None`, no projection is used. | |
norm_num_groups (`int`, *optional*, defaults to `None`): | |
The number of groups to use for the group norm in the attention. | |
spatial_norm_dim (`int`, *optional*, defaults to `None`): | |
The number of channels to use for the spatial normalization. | |
out_bias (`bool`, *optional*, defaults to `True`): | |
Set to `True` to use a bias in the output linear layer. | |
scale_qk (`bool`, *optional*, defaults to `True`): | |
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. | |
only_cross_attention (`bool`, *optional*, defaults to `False`): | |
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if | |
`added_kv_proj_dim` is not `None`. | |
eps (`float`, *optional*, defaults to 1e-5): | |
An additional value added to the denominator in group normalization that is used for numerical stability. | |
rescale_output_factor (`float`, *optional*, defaults to 1.0): | |
A factor to rescale the output by dividing it with this value. | |
residual_connection (`bool`, *optional*, defaults to `False`): | |
Set to `True` to add the residual connection to the output. | |
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): | |
Set to `True` if the attention block is loaded from a deprecated state dict. | |
processor (`AttnProcessor`, *optional*, defaults to `None`): | |
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and | |
`AttnProcessor` otherwise. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias: bool = False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
cross_attention_norm: Optional[str] = None, | |
cross_attention_norm_num_groups: int = 32, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
spatial_norm_dim: Optional[int] = None, | |
out_bias: bool = True, | |
scale_qk: bool = True, | |
only_cross_attention: bool = False, | |
eps: float = 1e-5, | |
rescale_output_factor: float = 1.0, | |
residual_connection: bool = False, | |
_from_deprecated_attn_block: bool = False, | |
processor: Optional["AttnProcessor"] = None, | |
attention_mode: str = "xformers", | |
use_rope: bool = False, | |
rope_scaling: Optional[Dict] = None, | |
compress_kv_factor: Optional[Tuple] = None, | |
): | |
super().__init__() | |
self.inner_dim = dim_head * heads | |
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.rescale_output_factor = rescale_output_factor | |
self.residual_connection = residual_connection | |
self.dropout = dropout | |
self.use_rope = use_rope | |
self.rope_scaling = rope_scaling | |
self.compress_kv_factor = compress_kv_factor | |
# we make use of this private variable to know whether this class is loaded | |
# with an deprecated state dict so that we can convert it on the fly | |
self._from_deprecated_attn_block = _from_deprecated_attn_block | |
self.scale_qk = scale_qk | |
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 | |
self.heads = heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self.added_kv_proj_dim = added_kv_proj_dim | |
self.only_cross_attention = only_cross_attention | |
if self.added_kv_proj_dim is None and self.only_cross_attention: | |
raise ValueError( | |
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | |
) | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True) | |
else: | |
self.group_norm = None | |
if spatial_norm_dim is not None: | |
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim) | |
else: | |
self.spatial_norm = None | |
if cross_attention_norm is None: | |
self.norm_cross = None | |
elif cross_attention_norm == "layer_norm": | |
self.norm_cross = nn.LayerNorm(self.cross_attention_dim) | |
elif cross_attention_norm == "group_norm": | |
if self.added_kv_proj_dim is not None: | |
# The given `encoder_hidden_states` are initially of shape | |
# (batch_size, seq_len, added_kv_proj_dim) before being projected | |
# to (batch_size, seq_len, cross_attention_dim). The norm is applied | |
# before the projection, so we need to use `added_kv_proj_dim` as | |
# the number of channels for the group norm. | |
norm_cross_num_channels = added_kv_proj_dim | |
else: | |
norm_cross_num_channels = self.cross_attention_dim | |
self.norm_cross = nn.GroupNorm( | |
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True | |
) | |
else: | |
raise ValueError( | |
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" | |
) | |
if USE_PEFT_BACKEND: | |
linear_cls = nn.Linear | |
else: | |
linear_cls = LoRACompatibleLinear | |
assert not ( | |
self.use_rope and (self.compress_kv_factor is not None) | |
), "Can not both enable compressing kv and using rope" | |
if self.compress_kv_factor is not None: | |
self._init_compress() | |
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) | |
if not self.only_cross_attention: | |
# only relevant for the `AddedKVProcessor` classes | |
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
else: | |
self.to_k = None | |
self.to_v = None | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(linear_cls(self.inner_dim, query_dim, bias=out_bias)) | |
self.to_out.append(nn.Dropout(dropout)) | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
if processor is None: | |
processor = ( | |
AttnProcessor2_0( | |
self.inner_dim, | |
attention_mode, | |
use_rope, | |
rope_scaling=rope_scaling, | |
compress_kv_factor=compress_kv_factor, | |
) | |
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk | |
else AttnProcessor() | |
) | |
self.set_processor(processor) | |
def set_use_memory_efficient_attention_xformers( | |
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None | |
) -> None: | |
r""" | |
Set whether to use memory efficient attention from `xformers` or not. | |
Args: | |
use_memory_efficient_attention_xformers (`bool`): | |
Whether to use memory efficient attention from `xformers` or not. | |
attention_op (`Callable`, *optional*): | |
The attention operation to use. Defaults to `None` which uses the default attention operation from | |
`xformers`. | |
""" | |
is_lora = hasattr(self, "processor") | |
is_custom_diffusion = hasattr(self, "processor") and isinstance( | |
self.processor, | |
(CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor, CustomDiffusionAttnProcessor2_0), | |
) | |
is_added_kv_processor = hasattr(self, "processor") and isinstance( | |
self.processor, | |
( | |
AttnAddedKVProcessor, | |
AttnAddedKVProcessor2_0, | |
SlicedAttnAddedKVProcessor, | |
XFormersAttnAddedKVProcessor, | |
LoRAAttnAddedKVProcessor, | |
), | |
) | |
if use_memory_efficient_attention_xformers: | |
if is_added_kv_processor and (is_lora or is_custom_diffusion): | |
raise NotImplementedError( | |
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}" | |
) | |
if not is_xformers_available(): | |
raise ModuleNotFoundError( | |
( | |
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" | |
" xformers" | |
), | |
name="xformers", | |
) | |
elif not torch.cuda.is_available(): | |
raise ValueError( | |
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" | |
" only available for GPU " | |
) | |
else: | |
try: | |
# Make sure we can run the memory efficient attention | |
_ = xformers.ops.memory_efficient_attention( | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
torch.randn((1, 2, 40), device="cuda"), | |
) | |
except Exception as e: | |
raise e | |
if is_lora: | |
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers | |
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0? | |
processor = LoRAXFormersAttnProcessor( | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
rank=self.processor.rank, | |
attention_op=attention_op, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
processor.to(self.processor.to_q_lora.up.weight.device) | |
elif is_custom_diffusion: | |
processor = CustomDiffusionXFormersAttnProcessor( | |
train_kv=self.processor.train_kv, | |
train_q_out=self.processor.train_q_out, | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
attention_op=attention_op, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
if hasattr(self.processor, "to_k_custom_diffusion"): | |
processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
elif is_added_kv_processor: | |
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP | |
# which uses this type of cross attention ONLY because the attention mask of format | |
# [0, ..., -10.000, ..., 0, ...,] is not supported | |
# throw warning | |
logger.info( | |
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation." | |
) | |
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op) | |
else: | |
processor = XFormersAttnProcessor(attention_op=attention_op) | |
else: | |
if is_lora: | |
attn_processor_class = ( | |
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor | |
) | |
processor = attn_processor_class( | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
rank=self.processor.rank, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
processor.to(self.processor.to_q_lora.up.weight.device) | |
elif is_custom_diffusion: | |
attn_processor_class = ( | |
CustomDiffusionAttnProcessor2_0 | |
if hasattr(F, "scaled_dot_product_attention") | |
else CustomDiffusionAttnProcessor | |
) | |
processor = attn_processor_class( | |
train_kv=self.processor.train_kv, | |
train_q_out=self.processor.train_q_out, | |
hidden_size=self.processor.hidden_size, | |
cross_attention_dim=self.processor.cross_attention_dim, | |
) | |
processor.load_state_dict(self.processor.state_dict()) | |
if hasattr(self.processor, "to_k_custom_diffusion"): | |
processor.to(self.processor.to_k_custom_diffusion.weight.device) | |
else: | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
processor = ( | |
AttnProcessor2_0() | |
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk | |
else AttnProcessor() | |
) | |
self.set_processor(processor) | |
def set_attention_slice(self, slice_size: int) -> None: | |
r""" | |
Set the slice size for attention computation. | |
Args: | |
slice_size (`int`): | |
The slice size for attention computation. | |
""" | |
if slice_size is not None and slice_size > self.sliceable_head_dim: | |
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") | |
if slice_size is not None and self.added_kv_proj_dim is not None: | |
processor = SlicedAttnAddedKVProcessor(slice_size) | |
elif slice_size is not None: | |
processor = SlicedAttnProcessor(slice_size) | |
elif self.added_kv_proj_dim is not None: | |
processor = AttnAddedKVProcessor() | |
else: | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
processor = ( | |
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor() | |
) | |
self.set_processor(processor) | |
def set_processor(self, processor: "AttnProcessor", _remove_lora: bool = False) -> None: | |
r""" | |
Set the attention processor to use. | |
Args: | |
processor (`AttnProcessor`): | |
The attention processor to use. | |
_remove_lora (`bool`, *optional*, defaults to `False`): | |
Set to `True` to remove LoRA layers from the model. | |
""" | |
if not USE_PEFT_BACKEND and hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None: | |
deprecate( | |
"set_processor to offload LoRA", | |
"0.26.0", | |
"In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.", | |
) | |
# TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete | |
# We need to remove all LoRA layers | |
# Don't forget to remove ALL `_remove_lora` from the codebase | |
for module in self.modules(): | |
if hasattr(module, "set_lora_layer"): | |
module.set_lora_layer(None) | |
# if current processor is in `self._modules` and if passed `processor` is not, we need to | |
# pop `processor` from `self._modules` | |
if ( | |
hasattr(self, "processor") | |
and isinstance(self.processor, torch.nn.Module) | |
and not isinstance(processor, torch.nn.Module) | |
): | |
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}") | |
self._modules.pop("processor") | |
self.processor = processor | |
def get_processor(self, return_deprecated_lora: bool = False): | |
r""" | |
Get the attention processor in use. | |
Args: | |
return_deprecated_lora (`bool`, *optional*, defaults to `False`): | |
Set to `True` to return the deprecated LoRA attention processor. | |
Returns: | |
"AttentionProcessor": The attention processor in use. | |
""" | |
if not return_deprecated_lora: | |
return self.processor | |
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible | |
# serialization format for LoRA Attention Processors. It should be deleted once the integration | |
# with PEFT is completed. | |
is_lora_activated = { | |
name: module.lora_layer is not None | |
for name, module in self.named_modules() | |
if hasattr(module, "lora_layer") | |
} | |
# 1. if no layer has a LoRA activated we can return the processor as usual | |
if not any(is_lora_activated.values()): | |
return self.processor | |
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj` | |
is_lora_activated.pop("add_k_proj", None) | |
is_lora_activated.pop("add_v_proj", None) | |
# 2. else it is not posssible that only some layers have LoRA activated | |
if not all(is_lora_activated.values()): | |
raise ValueError( | |
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" | |
) | |
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor | |
non_lora_processor_cls_name = self.processor.__class__.__name__ | |
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name) | |
hidden_size = self.inner_dim | |
# now create a LoRA attention processor from the LoRA layers | |
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]: | |
kwargs = { | |
"cross_attention_dim": self.cross_attention_dim, | |
"rank": self.to_q.lora_layer.rank, | |
"network_alpha": self.to_q.lora_layer.network_alpha, | |
"q_rank": self.to_q.lora_layer.rank, | |
"q_hidden_size": self.to_q.lora_layer.out_features, | |
"k_rank": self.to_k.lora_layer.rank, | |
"k_hidden_size": self.to_k.lora_layer.out_features, | |
"v_rank": self.to_v.lora_layer.rank, | |
"v_hidden_size": self.to_v.lora_layer.out_features, | |
"out_rank": self.to_out[0].lora_layer.rank, | |
"out_hidden_size": self.to_out[0].lora_layer.out_features, | |
} | |
if hasattr(self.processor, "attention_op"): | |
kwargs["attention_op"] = self.processor.attention_op | |
lora_processor = lora_processor_cls(hidden_size, **kwargs) | |
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
elif lora_processor_cls == LoRAAttnAddedKVProcessor: | |
lora_processor = lora_processor_cls( | |
hidden_size, | |
cross_attention_dim=self.add_k_proj.weight.shape[0], | |
rank=self.to_q.lora_layer.rank, | |
network_alpha=self.to_q.lora_layer.network_alpha, | |
) | |
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict()) | |
# only save if used | |
if self.add_k_proj.lora_layer is not None: | |
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict()) | |
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict()) | |
else: | |
lora_processor.add_k_proj_lora = None | |
lora_processor.add_v_proj_lora = None | |
else: | |
raise ValueError(f"{lora_processor_cls} does not exist.") | |
return lora_processor | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
**cross_attention_kwargs, | |
) -> torch.Tensor: | |
r""" | |
The forward method of the `Attention` class. | |
Args: | |
hidden_states (`torch.Tensor`): | |
The hidden states of the query. | |
encoder_hidden_states (`torch.Tensor`, *optional*): | |
The hidden states of the encoder. | |
attention_mask (`torch.Tensor`, *optional*): | |
The attention mask to use. If `None`, no mask is applied. | |
**cross_attention_kwargs: | |
Additional keyword arguments to pass along to the cross attention. | |
Returns: | |
`torch.Tensor`: The output of the attention layer. | |
""" | |
# The `Attention` class can call different attention processors / attention functions | |
# here we simply pass along all tensors to the selected processor class | |
# For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
return self.processor( | |
self, | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: | |
r""" | |
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` | |
is the number of heads initialized while constructing the `Attention` class. | |
Args: | |
tensor (`torch.Tensor`): The tensor to reshape. | |
Returns: | |
`torch.Tensor`: The reshaped tensor. | |
""" | |
head_size = self.heads | |
batch_size, seq_len, dim = tensor.shape | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) | |
return tensor | |
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: | |
r""" | |
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is | |
the number of heads initialized while constructing the `Attention` class. | |
Args: | |
tensor (`torch.Tensor`): The tensor to reshape. | |
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is | |
reshaped to `[batch_size * heads, seq_len, dim // heads]`. | |
Returns: | |
`torch.Tensor`: The reshaped tensor. | |
""" | |
head_size = self.heads | |
batch_size, seq_len, dim = tensor.shape | |
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) | |
tensor = tensor.permute(0, 2, 1, 3) | |
if out_dim == 3: | |
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size) | |
return tensor | |
def get_attention_scores( | |
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None | |
) -> torch.Tensor: | |
r""" | |
Compute the attention scores. | |
Args: | |
query (`torch.Tensor`): The query tensor. | |
key (`torch.Tensor`): The key tensor. | |
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | |
Returns: | |
`torch.Tensor`: The attention probabilities/scores. | |
""" | |
dtype = query.dtype | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
if attention_mask is None: | |
baddbmm_input = torch.empty( | |
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device | |
) | |
beta = 0 | |
else: | |
baddbmm_input = attention_mask | |
beta = 1 | |
attention_scores = torch.baddbmm( | |
baddbmm_input, | |
query, | |
key.transpose(-1, -2), | |
beta=beta, | |
alpha=self.scale, | |
) | |
del baddbmm_input | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
del attention_scores | |
attention_probs = attention_probs.to(dtype) | |
return attention_probs | |
def prepare_attention_mask( | |
self, attention_mask: torch.Tensor, target_length: int, batch_size: int, out_dim: int = 3 | |
) -> torch.Tensor: | |
r""" | |
Prepare the attention mask for the attention computation. | |
Args: | |
attention_mask (`torch.Tensor`): | |
The attention mask to prepare. | |
target_length (`int`): | |
The target length of the attention mask. This is the length of the attention mask after padding. | |
batch_size (`int`): | |
The batch size, which is used to repeat the attention mask. | |
out_dim (`int`, *optional*, defaults to `3`): | |
The output dimension of the attention mask. Can be either `3` or `4`. | |
Returns: | |
`torch.Tensor`: The prepared attention mask. | |
""" | |
head_size = self.heads | |
if attention_mask is None: | |
return attention_mask | |
current_length: int = attention_mask.shape[-1] | |
if current_length != target_length: | |
if attention_mask.device.type == "mps": | |
# HACK: MPS: Does not support padding by greater than dimension of input tensor. | |
# Instead, we can manually construct the padding tensor. | |
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length) | |
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device) | |
attention_mask = torch.cat([attention_mask, padding], dim=2) | |
else: | |
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask: | |
# we want to instead pad by (0, remaining_length), where remaining_length is: | |
# remaining_length: int = target_length - current_length | |
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
if out_dim == 3: | |
if attention_mask.shape[0] < batch_size * head_size: | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) | |
elif out_dim == 4: | |
attention_mask = attention_mask.unsqueeze(1) | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) | |
return attention_mask | |
def norm_encoder_hidden_states(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: | |
r""" | |
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the | |
`Attention` class. | |
Args: | |
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. | |
Returns: | |
`torch.Tensor`: The normalized encoder hidden states. | |
""" | |
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states" | |
if isinstance(self.norm_cross, nn.LayerNorm): | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
elif isinstance(self.norm_cross, nn.GroupNorm): | |
# Group norm norms along the channels dimension and expects | |
# input to be in the shape of (N, C, *). In this case, we want | |
# to norm along the hidden dimension, so we need to move | |
# (batch_size, sequence_length, hidden_size) -> | |
# (batch_size, hidden_size, sequence_length) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
else: | |
assert False | |
return encoder_hidden_states | |
def _init_compress(self): | |
if len(self.compress_kv_factor) == 2: | |
self.sr = nn.Conv2d( | |
self.inner_dim, | |
self.inner_dim, | |
groups=self.inner_dim, | |
kernel_size=self.compress_kv_factor, | |
stride=self.compress_kv_factor, | |
) | |
self.sr.weight.data.fill_(1 / self.compress_kv_factor[0] ** 2) | |
elif len(self.compress_kv_factor) == 1: | |
self.kernel_size = self.compress_kv_factor[0] | |
self.sr = nn.Conv1d( | |
self.inner_dim, | |
self.inner_dim, | |
groups=self.inner_dim, | |
kernel_size=self.compress_kv_factor[0], | |
stride=self.compress_kv_factor[0], | |
) | |
self.sr.weight.data.fill_(1 / self.compress_kv_factor[0]) | |
self.sr.bias.data.zero_() | |
self.norm = nn.LayerNorm(self.inner_dim) | |
class AttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self, dim=1152, attention_mode="xformers", use_rope=False, rope_scaling=None, compress_kv_factor=None): | |
self.dim = dim | |
self.attention_mode = attention_mode | |
self.use_rope = use_rope | |
self.rope_scaling = rope_scaling | |
self.compress_kv_factor = compress_kv_factor | |
if self.use_rope: | |
self._init_rope() | |
if not hasattr(F, "scaled_dot_product_attention"): | |
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
def _init_rope(self): | |
if self.rope_scaling is None: | |
self.rope2d = RoPE2D() | |
self.rope1d = RoPE1D() | |
else: | |
scaling_type = self.rope_scaling["type"] | |
scaling_factor_2d = self.rope_scaling["factor_2d"] | |
scaling_factor_1d = self.rope_scaling["factor_1d"] | |
if scaling_type == "linear": | |
self.rope2d = LinearScalingRoPE2D(scaling_factor=scaling_factor_2d) | |
self.rope1d = LinearScalingRoPE1D(scaling_factor=scaling_factor_1d) | |
else: | |
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
scale: float = 1.0, | |
position_q: Optional[torch.LongTensor] = None, | |
position_k: Optional[torch.LongTensor] = None, | |
last_shape: Tuple[int] = None, | |
) -> torch.FloatTensor: | |
residual = hidden_states | |
args = () if USE_PEFT_BACKEND else (scale,) | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
if self.compress_kv_factor is not None: | |
batch_size = hidden_states.shape[0] | |
if len(last_shape) == 2: | |
encoder_hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, self.dim, *last_shape) | |
encoder_hidden_states = ( | |
attn.sr(encoder_hidden_states).reshape(batch_size, self.dim, -1).permute(0, 2, 1) | |
) | |
elif len(last_shape) == 1: | |
encoder_hidden_states = hidden_states.permute(0, 2, 1) | |
if last_shape[0] % 2 == 1: | |
first_frame_pad = encoder_hidden_states[:, :, :1].repeat((1, 1, attn.kernel_size - 1)) | |
encoder_hidden_states = torch.concatenate((first_frame_pad, encoder_hidden_states), dim=2) | |
encoder_hidden_states = attn.sr(encoder_hidden_states).permute(0, 2, 1) | |
else: | |
raise NotImplementedError(f"NotImplementedError with last_shape {last_shape}") | |
encoder_hidden_states = attn.norm(encoder_hidden_states) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
) | |
if attention_mask is not None: | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
args = () if USE_PEFT_BACKEND else (scale,) | |
query = attn.to_q(hidden_states, *args) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states, *args) | |
value = attn.to_v(encoder_hidden_states, *args) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
if self.use_rope: | |
# require the shape of (batch_size x nheads x ntokens x dim) | |
if position_q.ndim == 3: | |
query = self.rope2d(query, position_q) | |
elif position_q.ndim == 2: | |
query = self.rope1d(query, position_q) | |
else: | |
raise NotImplementedError | |
if position_k.ndim == 3: | |
key = self.rope2d(key, position_k) | |
elif position_k.ndim == 2: | |
key = self.rope1d(key, position_k) | |
else: | |
raise NotImplementedError | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
# TODO: add support for attn.scale when we move to Torch 2.1 | |
if self.attention_mode == "flash": | |
assert attention_mask is None or torch.all( | |
attention_mask.bool() | |
), "flash-attn do not support attention_mask" | |
with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=True, enable_mem_efficient=False): | |
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
elif self.attention_mode == "xformers": | |
with torch.backends.cuda.sdp_kernel(enable_math=False, enable_flash=False, enable_mem_efficient=True): | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
elif self.attention_mode == "math": | |
hidden_states = F.scaled_dot_product_attention( | |
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False | |
) | |
else: | |
raise NotImplementedError(f"Found attention_mode: {self.attention_mode}") | |
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states, *args) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class GatedSelfAttentionDense(nn.Module): | |
r""" | |
A gated self-attention dense layer that combines visual features and object features. | |
Parameters: | |
query_dim (`int`): The number of channels in the query. | |
context_dim (`int`): The number of channels in the context. | |
n_heads (`int`): The number of heads to use for attention. | |
d_head (`int`): The number of channels in each head. | |
""" | |
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor: | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh") | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(linear_cls(inner_dim, dim_out)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: | |
compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear) | |
for module in self.net: | |
if isinstance(module, compatible_cls): | |
hidden_states = module(hidden_states, scale) | |
else: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
class BasicTransformerBlock_(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
attention_mode: str = "xformers", | |
use_rope: bool = False, | |
rope_scaling: Optional[Dict] = None, | |
compress_kv_factor: Optional[Tuple] = None, | |
block_idx: Optional[int] = None, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
attention_mode=attention_mode, | |
use_rope=use_rope, | |
rope_scaling=rope_scaling, | |
compress_kv_factor=compress_kv_factor, | |
) | |
# # 2. Cross-Attn | |
# if cross_attention_dim is not None or double_self_attention: | |
# # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# # the second cross attention block. | |
# self.norm2 = ( | |
# AdaLayerNorm(dim, num_embeds_ada_norm) | |
# if self.use_ada_layer_norm | |
# else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
# ) | |
# self.attn2 = Attention( | |
# query_dim=dim, | |
# cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
# heads=num_attention_heads, | |
# dim_head=attention_head_dim, | |
# dropout=dropout, | |
# bias=attention_bias, | |
# upcast_attention=upcast_attention, | |
# ) # is self-attn if encoder_hidden_states is none | |
# else: | |
# self.norm2 = None | |
# self.attn2 = None | |
# 3. Feed-forward | |
# if not self.use_ada_layer_norm_single: | |
# self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
# pab | |
self.last_out = None | |
self.count = 0 | |
self.block_idx = block_idx | |
self.temp_mlp_count = 0 | |
def set_last_out(self, last_out: torch.Tensor): | |
self.last_out = last_out | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
position_q: Optional[torch.LongTensor] = None, | |
position_k: Optional[torch.LongTensor] = None, | |
frame: int = None, | |
org_timestep: Optional[torch.LongTensor] = None, | |
all_timesteps=None, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
broadcast_temporal, self.count = if_broadcast_temporal(int(org_timestep[0]), self.count) | |
if broadcast_temporal: | |
attn_output = self.last_out | |
assert self.use_ada_layer_norm_single | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
else: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
if enable_sequence_parallel(): | |
norm_hidden_states = self.dynamic_switch(norm_hidden_states, to_spatial_shard=True) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
position_q=position_q, | |
position_k=position_k, | |
last_shape=frame, | |
**cross_attention_kwargs, | |
) | |
if enable_sequence_parallel(): | |
attn_output = self.dynamic_switch(attn_output, to_spatial_shard=False) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
if enable_pab(): | |
self.set_last_out(attn_output) | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# # 3. Cross-Attention | |
# if self.attn2 is not None: | |
# if self.use_ada_layer_norm: | |
# norm_hidden_states = self.norm2(hidden_states, timestep) | |
# elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
# norm_hidden_states = self.norm2(hidden_states) | |
# elif self.use_ada_layer_norm_single: | |
# # For PixArt norm2 isn't applied here: | |
# # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
# norm_hidden_states = hidden_states | |
# else: | |
# raise ValueError("Incorrect norm") | |
# if self.pos_embed is not None and self.use_ada_layer_norm_single is False: | |
# norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# attn_output = self.attn2( | |
# norm_hidden_states, | |
# encoder_hidden_states=encoder_hidden_states, | |
# attention_mask=encoder_attention_mask, | |
# **cross_attention_kwargs, | |
# ) | |
# hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
# if not self.use_ada_layer_norm_single: | |
# norm_hidden_states = self.norm3(hidden_states) | |
if enable_pab(): | |
broadcast_mlp, self.temp_mlp_count, broadcast_next, broadcast_range = if_broadcast_mlp( | |
int(org_timestep[0]), | |
self.temp_mlp_count, | |
self.block_idx, | |
all_timesteps.tolist(), | |
is_temporal=True, | |
) | |
if enable_pab() and broadcast_mlp: | |
ff_output = get_mlp_output( | |
broadcast_range, | |
timestep=int(org_timestep[0]), | |
block_idx=self.block_idx, | |
is_temporal=True, | |
) | |
else: | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.use_ada_layer_norm_single: | |
# norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = self.norm3(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice, scale=lora_scale) | |
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
if enable_pab() and broadcast_next: | |
save_mlp_output( | |
timestep=int(org_timestep[0]), | |
block_idx=self.block_idx, | |
ff_output=ff_output, | |
is_temporal=True, | |
) | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
def dynamic_switch(self, x, to_spatial_shard: bool): | |
if to_spatial_shard: | |
scatter_dim, gather_dim = 0, 1 | |
scatter_pad = get_spatial_pad() | |
gather_pad = get_temporal_pad() | |
else: | |
scatter_dim, gather_dim = 1, 0 | |
scatter_pad = get_temporal_pad() | |
gather_pad = get_spatial_pad() | |
x = all_to_all_with_pad( | |
x, | |
get_sequence_parallel_group(), | |
scatter_dim=scatter_dim, | |
gather_dim=gather_dim, | |
scatter_pad=scatter_pad, | |
gather_pad=gather_pad, | |
) | |
return x | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
norm_type (`str`, *optional*, defaults to `"layer_norm"`): | |
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single' | |
norm_eps: float = 1e-5, | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
positional_embeddings: Optional[str] = None, | |
num_positional_embeddings: Optional[int] = None, | |
attention_mode: str = "xformers", | |
use_rope: bool = False, | |
rope_scaling: Optional[Dict] = None, | |
compress_kv_factor: Optional[Tuple] = None, | |
block_idx: Optional[int] = None, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
self.use_ada_layer_norm_single = norm_type == "ada_norm_single" | |
self.use_layer_norm = norm_type == "layer_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
if positional_embeddings and (num_positional_embeddings is None): | |
raise ValueError( | |
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined." | |
) | |
if positional_embeddings == "sinusoidal": | |
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings) | |
else: | |
self.pos_embed = None | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
attention_mode=attention_mode, | |
use_rope=use_rope, | |
rope_scaling=rope_scaling, | |
compress_kv_factor=compress_kv_factor, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
attention_mode=attention_mode, # only xformers support attention_mask | |
use_rope=False, # do not position in cross attention | |
compress_kv_factor=None, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
) | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# 5. Scale-shift for PixArt-Alpha. | |
if self.use_ada_layer_norm_single: | |
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
# pab | |
self.cross_last = None | |
self.cross_count = 0 | |
self.spatial_last = None | |
self.spatial_count = 0 | |
self.block_idx = block_idx | |
self.spatila_mlp_count = 0 | |
def set_cross_last(self, last_out: torch.Tensor): | |
self.cross_last = last_out | |
def set_spatial_last(self, last_out: torch.Tensor): | |
self.spatial_last = last_out | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
position_q: Optional[torch.LongTensor] = None, | |
position_k: Optional[torch.LongTensor] = None, | |
hw: Tuple[int, int] = None, | |
org_timestep: Optional[torch.LongTensor] = None, | |
all_timesteps=None, | |
) -> torch.FloatTensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
broadcast_spatial, self.spatial_count = if_broadcast_spatial( | |
int(org_timestep[0]), self.spatial_count, self.block_idx | |
) | |
if broadcast_spatial: | |
attn_output = self.spatial_last | |
assert self.use_ada_layer_norm_single | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
else: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.use_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
norm_hidden_states = norm_hidden_states.squeeze(1) | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
position_q=position_q, | |
position_k=position_k, | |
last_shape=hw, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.use_ada_layer_norm_single: | |
attn_output = gate_msa * attn_output | |
if enable_pab(): | |
self.set_spatial_last(attn_output) | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
broadcast_cross, self.cross_count = if_broadcast_cross(int(org_timestep[0]), self.cross_count) | |
if broadcast_cross: | |
hidden_states = hidden_states + self.cross_last | |
else: | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero or self.use_layer_norm: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.use_ada_layer_norm_single: | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.use_ada_layer_norm_single is False: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
position_q=None, # cross attn do not need relative position | |
position_k=None, | |
last_shape=None, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
if enable_pab(): | |
self.set_cross_last(attn_output) | |
if enable_pab(): | |
broadcast_mlp, self.spatila_mlp_count, broadcast_next, broadcast_range = if_broadcast_mlp( | |
int(org_timestep[0]), | |
self.spatila_mlp_count, | |
self.block_idx, | |
all_timesteps.tolist(), | |
is_temporal=False, | |
) | |
if enable_pab() and broadcast_mlp: | |
ff_output = get_mlp_output( | |
broadcast_range, | |
timestep=int(org_timestep[0]), | |
block_idx=self.block_idx, | |
is_temporal=False, | |
) | |
else: | |
# 4. Feed-forward | |
if not self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.use_ada_layer_norm_single: | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.use_ada_layer_norm_single: | |
ff_output = gate_mlp * ff_output | |
if enable_pab() and broadcast_next: | |
save_mlp_output( | |
timestep=int(org_timestep[0]), | |
block_idx=self.block_idx, | |
ff_output=ff_output, | |
is_temporal=False, | |
) | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class AdaLayerNormSingle(nn.Module): | |
r""" | |
Norm layer adaptive layer norm single (adaLN-single). | |
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3). | |
Parameters: | |
embedding_dim (`int`): The size of each embedding vector. | |
use_additional_conditions (`bool`): To use additional conditions for normalization or not. | |
""" | |
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False): | |
super().__init__() | |
self.emb = CombinedTimestepSizeEmbeddings( | |
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions | |
) | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) | |
def forward( | |
self, | |
timestep: torch.Tensor, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
batch_size: int = None, | |
hidden_dtype: Optional[torch.dtype] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: | |
# No modulation happening here. | |
embedded_timestep = self.emb( | |
timestep, batch_size=batch_size, hidden_dtype=hidden_dtype, resolution=None, aspect_ratio=None | |
) | |
return self.linear(self.silu(embedded_timestep)), embedded_timestep | |
class Transformer3DModelOutput(BaseOutput): | |
""" | |
The output of [`Transformer2DModel`]. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
distributions for the unnoised latent pixels. | |
""" | |
sample: torch.FloatTensor | |
class LatteT2V(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
""" | |
A 2D Transformer model for image-like data. | |
Parameters: | |
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. | |
in_channels (`int`, *optional*): | |
The number of channels in the input and output (specify if the input is **continuous**). | |
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. | |
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). | |
This is fixed during training since it is used to learn a number of position embeddings. | |
num_vector_embeds (`int`, *optional*): | |
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). | |
Includes the class for the masked latent pixel. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. | |
num_embeds_ada_norm ( `int`, *optional*): | |
The number of diffusion steps used during training. Pass if at least one of the norm_layers is | |
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are | |
added to the hidden states. | |
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. | |
attention_bias (`bool`, *optional*): | |
Configure if the `TransformerBlocks` attention should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
num_attention_heads: int = 16, | |
patch_size_t: int = 1, | |
attention_head_dim: int = 88, | |
in_channels: Optional[int] = None, | |
out_channels: Optional[int] = None, | |
num_layers: int = 1, | |
dropout: float = 0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: Optional[int] = None, | |
attention_bias: bool = False, | |
sample_size: Optional[int] = None, | |
num_vector_embeds: Optional[int] = None, | |
patch_size: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
use_linear_projection: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_type: str = "layer_norm", | |
norm_elementwise_affine: bool = True, | |
norm_eps: float = 1e-5, | |
attention_type: str = "default", | |
caption_channels: int = None, | |
video_length: int = 16, | |
attention_mode: str = "flash", | |
use_rope: bool = False, | |
model_max_length: int = 300, | |
rope_scaling_type: str = "linear", | |
compress_kv_factor: int = 1, | |
interpolation_scale_1d: float = None, | |
): | |
super().__init__() | |
self.use_linear_projection = use_linear_projection | |
self.num_attention_heads = num_attention_heads | |
self.attention_head_dim = attention_head_dim | |
inner_dim = num_attention_heads * attention_head_dim | |
self.video_length = video_length | |
self.use_rope = use_rope | |
self.model_max_length = model_max_length | |
self.compress_kv_factor = compress_kv_factor | |
self.num_layers = num_layers | |
self.config.hidden_size = model_max_length | |
assert not (self.compress_kv_factor != 1 and use_rope), "Can not both enable compressing kv and using rope" | |
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv | |
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear | |
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` | |
# Define whether input is continuous or discrete depending on configuration | |
self.is_input_continuous = (in_channels is not None) and (patch_size is None) | |
self.is_input_vectorized = num_vector_embeds is not None | |
# self.is_input_patches = in_channels is not None and patch_size is not None | |
self.is_input_patches = True | |
if norm_type == "layer_norm" and num_embeds_ada_norm is not None: | |
deprecation_message = ( | |
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or" | |
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config." | |
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect" | |
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it" | |
" would be very nice if you could open a Pull request for the `transformer/config.json` file" | |
) | |
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False) | |
norm_type = "ada_norm" | |
# 2. Define input layers | |
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size" | |
self.height = sample_size[0] | |
self.width = sample_size[1] | |
self.patch_size = patch_size | |
interpolation_scale_2d = self.config.sample_size[0] // 64 # => 64 (= 512 pixart) has interpolation scale 1 | |
interpolation_scale_2d = max(interpolation_scale_2d, 1) | |
self.pos_embed = PatchEmbed( | |
height=sample_size[0], | |
width=sample_size[1], | |
patch_size=patch_size, | |
in_channels=in_channels, | |
embed_dim=inner_dim, | |
interpolation_scale=interpolation_scale_2d, | |
) | |
# define temporal positional embedding | |
if interpolation_scale_1d is None: | |
if self.config.video_length % 2 == 1: | |
interpolation_scale_1d = ( | |
self.config.video_length - 1 | |
) // 16 # => 16 (= 16 Latte) has interpolation scale 1 | |
else: | |
interpolation_scale_1d = self.config.video_length // 16 # => 16 (= 16 Latte) has interpolation scale 1 | |
# interpolation_scale_1d = self.config.video_length // 5 # | |
interpolation_scale_1d = max(interpolation_scale_1d, 1) | |
temp_pos_embed = get_1d_sincos_pos_embed( | |
inner_dim, video_length, interpolation_scale=interpolation_scale_1d | |
) # 1152 hidden size | |
self.register_buffer("temp_pos_embed", torch.from_numpy(temp_pos_embed).float().unsqueeze(0), persistent=False) | |
rope_scaling = None | |
if self.use_rope: | |
self.position_getter_2d = PositionGetter2D() | |
self.position_getter_1d = PositionGetter1D() | |
rope_scaling = dict( | |
type=rope_scaling_type, factor_2d=interpolation_scale_2d, factor_1d=interpolation_scale_1d | |
) | |
# 3. Define transformers blocks, spatial attention | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
dropout=dropout, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=double_self_attention, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
attention_mode=attention_mode, | |
use_rope=use_rope, | |
rope_scaling=rope_scaling, | |
compress_kv_factor=(compress_kv_factor, compress_kv_factor) | |
if d >= num_layers // 2 and compress_kv_factor != 1 | |
else None, # follow pixart-sigma, apply in second-half layers | |
block_idx=d, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# Define temporal transformers blocks | |
self.temporal_transformer_blocks = nn.ModuleList( | |
[ | |
BasicTransformerBlock_( # one attention | |
inner_dim, | |
num_attention_heads, # num_attention_heads | |
attention_head_dim, # attention_head_dim 72 | |
dropout=dropout, | |
cross_attention_dim=None, | |
activation_fn=activation_fn, | |
num_embeds_ada_norm=num_embeds_ada_norm, | |
attention_bias=attention_bias, | |
only_cross_attention=only_cross_attention, | |
double_self_attention=False, | |
upcast_attention=upcast_attention, | |
norm_type=norm_type, | |
norm_elementwise_affine=norm_elementwise_affine, | |
norm_eps=norm_eps, | |
attention_type=attention_type, | |
attention_mode=attention_mode, | |
use_rope=use_rope, | |
rope_scaling=rope_scaling, | |
compress_kv_factor=(compress_kv_factor,) | |
if d >= num_layers // 2 and compress_kv_factor != 1 | |
else None, # follow pixart-sigma, apply in second-half layers | |
block_idx=d, | |
) | |
for d in range(num_layers) | |
] | |
) | |
# 4. Define output layers | |
self.out_channels = in_channels if out_channels is None else out_channels | |
if self.is_input_continuous: | |
# TODO: should use out_channels for continuous projections | |
if use_linear_projection: | |
self.proj_out = linear_cls(inner_dim, in_channels) | |
else: | |
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
elif self.is_input_vectorized: | |
self.norm_out = nn.LayerNorm(inner_dim) | |
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1) | |
elif self.is_input_patches and norm_type != "ada_norm_single": | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim) | |
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
elif self.is_input_patches and norm_type == "ada_norm_single": | |
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) | |
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) | |
# 5. PixArt-Alpha blocks. | |
self.adaln_single = None | |
self.use_additional_conditions = False | |
if norm_type == "ada_norm_single": | |
# self.use_additional_conditions = self.config.sample_size[0] == 128 # False, 128 -> 1024 | |
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use | |
# additional conditions until we find better name | |
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions) | |
self.caption_projection = None | |
if caption_channels is not None: | |
self.caption_projection = CaptionProjection(in_features=caption_channels, hidden_size=inner_dim) | |
self.gradient_checkpointing = False | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
def make_position(self, b, t, use_image_num, h, w, device): | |
pos_hw = self.position_getter_2d(b * (t + use_image_num), h, w, device) # fake_b = b*(t+use_image_num) | |
pos_t = self.position_getter_1d(b * h * w, t, device) # fake_b = b*h*w | |
return pos_hw, pos_t | |
def make_attn_mask(self, attention_mask, frame, dtype): | |
attention_mask = rearrange(attention_mask, "b t h w -> (b t) 1 (h w)") | |
# assume that mask is expressed as: | |
# (1 = keep, 0 = discard) | |
# convert mask into a bias that can be added to attention scores: | |
# (keep = +0, discard = -10000.0) | |
attention_mask = (1 - attention_mask.to(dtype)) * -10000.0 | |
attention_mask = attention_mask.to(self.dtype) | |
return attention_mask | |
def vae_to_diff_mask(self, attention_mask, use_image_num): | |
dtype = attention_mask.dtype | |
# b, t+use_image_num, h, w, assume t as channel | |
# this version do not use 3d patch embedding | |
attention_mask = F.max_pool2d( | |
attention_mask, kernel_size=(self.patch_size, self.patch_size), stride=(self.patch_size, self.patch_size) | |
) | |
attention_mask = attention_mask.bool().to(dtype) | |
return attention_mask | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
timestep: Optional[torch.LongTensor] = None, | |
all_timesteps=None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
use_image_num: int = 0, | |
enable_temporal_attentions: bool = True, | |
return_dict: bool = True, | |
): | |
""" | |
The [`Transformer2DModel`] forward method. | |
Args: | |
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, frame, channel, height, width)` if continuous): | |
Input `hidden_states`. | |
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
self-attention. | |
timestep ( `torch.LongTensor`, *optional*): | |
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
`AdaLayerZeroNorm`. | |
cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
attention_mask ( `torch.Tensor`, *optional*): | |
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
negative values to the attention scores corresponding to "discard" tokens. | |
encoder_attention_mask ( `torch.Tensor`, *optional*): | |
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
* Mask `(batch, sequence_length)` True = keep, False = discard. | |
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
above. This bias will be added to the cross-attention scores. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
tuple. | |
Returns: | |
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
`tuple` where the first element is the sample tensor. | |
""" | |
# 0. Split batch | |
if get_cfg_parallel_size() > 1: | |
( | |
hidden_states, | |
timestep, | |
encoder_hidden_states, | |
class_labels, | |
attention_mask, | |
encoder_attention_mask, | |
) = batch_func( | |
partial(split_sequence, process_group=get_cfg_parallel_group(), dim=0), | |
hidden_states, | |
timestep, | |
encoder_hidden_states, | |
class_labels, | |
attention_mask, | |
encoder_attention_mask, | |
) | |
input_batch_size, c, frame, h, w = hidden_states.shape | |
frame = frame - use_image_num # 20-4=16 | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous() | |
org_timestep = timestep | |
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
# expects mask of shape: | |
# [batch, key_tokens] | |
# adds singleton query_tokens dimension: | |
# [batch, 1, key_tokens] | |
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
if attention_mask is None: | |
attention_mask = torch.ones( | |
(input_batch_size, frame + use_image_num, h, w), device=hidden_states.device, dtype=hidden_states.dtype | |
) | |
attention_mask = self.vae_to_diff_mask(attention_mask, use_image_num) | |
dtype = attention_mask.dtype | |
attention_mask_compress = F.max_pool2d( | |
attention_mask.float(), kernel_size=self.compress_kv_factor, stride=self.compress_kv_factor | |
) | |
attention_mask_compress = attention_mask_compress.to(dtype) | |
attention_mask = self.make_attn_mask(attention_mask, frame, hidden_states.dtype) | |
attention_mask_compress = self.make_attn_mask(attention_mask_compress, frame, hidden_states.dtype) | |
# 1 + 4, 1 -> video condition, 4 -> image condition | |
# convert encoder_attention_mask to a bias the same way we do for attention_mask | |
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: # ndim == 2 means no image joint | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
encoder_attention_mask = repeat(encoder_attention_mask, "b 1 l -> (b f) 1 l", f=frame).contiguous() | |
encoder_attention_mask = encoder_attention_mask.to(self.dtype) | |
elif encoder_attention_mask is not None and encoder_attention_mask.ndim == 3: # ndim == 3 means image joint | |
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 | |
encoder_attention_mask_video = encoder_attention_mask[:, :1, ...] | |
encoder_attention_mask_video = repeat( | |
encoder_attention_mask_video, "b 1 l -> b (1 f) l", f=frame | |
).contiguous() | |
encoder_attention_mask_image = encoder_attention_mask[:, 1:, ...] | |
encoder_attention_mask = torch.cat([encoder_attention_mask_video, encoder_attention_mask_image], dim=1) | |
encoder_attention_mask = rearrange(encoder_attention_mask, "b n l -> (b n) l").contiguous().unsqueeze(1) | |
encoder_attention_mask = encoder_attention_mask.to(self.dtype) | |
# Retrieve lora scale. | |
cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 1. Input | |
if self.is_input_patches: # here | |
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size | |
hw = (height, width) | |
num_patches = height * width | |
hidden_states = self.pos_embed(hidden_states.to(self.dtype)) # alrady add positional embeddings | |
if self.adaln_single is not None: | |
if self.use_additional_conditions and added_cond_kwargs is None: | |
raise ValueError( | |
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." | |
) | |
# batch_size = hidden_states.shape[0] | |
batch_size = input_batch_size | |
timestep, embedded_timestep = self.adaln_single( | |
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype | |
) | |
# 2. Blocks | |
if self.caption_projection is not None: | |
batch_size = hidden_states.shape[0] | |
encoder_hidden_states = self.caption_projection(encoder_hidden_states.to(self.dtype)) # 3 120 1152 | |
if use_image_num != 0 and self.training: | |
encoder_hidden_states_video = encoder_hidden_states[:, :1, ...] | |
encoder_hidden_states_video = repeat( | |
encoder_hidden_states_video, "b 1 t d -> b (1 f) t d", f=frame | |
).contiguous() | |
encoder_hidden_states_image = encoder_hidden_states[:, 1:, ...] | |
encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1) | |
encoder_hidden_states_spatial = rearrange(encoder_hidden_states, "b f t d -> (b f) t d").contiguous() | |
else: | |
encoder_hidden_states_spatial = repeat( | |
encoder_hidden_states, "b 1 t d -> (b f) t d", f=frame | |
).contiguous() | |
# prepare timesteps for spatial and temporal block | |
timestep_spatial = repeat(timestep, "b d -> (b f) d", f=frame + use_image_num).contiguous() | |
timestep_temp = repeat(timestep, "b d -> (b p) d", p=num_patches).contiguous() | |
pos_hw, pos_t = None, None | |
if self.use_rope: | |
pos_hw, pos_t = self.make_position( | |
input_batch_size, frame, use_image_num, height, width, hidden_states.device | |
) | |
if enable_sequence_parallel(): | |
set_temporal_pad(frame + use_image_num) | |
set_spatial_pad(num_patches) | |
hidden_states = self.split_from_second_dim(hidden_states, input_batch_size) | |
encoder_hidden_states_spatial = self.split_from_second_dim(encoder_hidden_states_spatial, input_batch_size) | |
timestep_spatial = self.split_from_second_dim(timestep_spatial, input_batch_size) | |
attention_mask = self.split_from_second_dim(attention_mask, input_batch_size) | |
attention_mask_compress = self.split_from_second_dim(attention_mask_compress, input_batch_size) | |
temp_pos_embed = split_sequence( | |
self.temp_pos_embed, get_sequence_parallel_group(), dim=1, grad_scale="down", pad=get_temporal_pad() | |
) | |
else: | |
temp_pos_embed = self.temp_pos_embed | |
for i, (spatial_block, temp_block) in enumerate(zip(self.transformer_blocks, self.temporal_transformer_blocks)): | |
if self.training and self.gradient_checkpointing: | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
spatial_block, | |
hidden_states, | |
attention_mask_compress if i >= self.num_layers // 2 else attention_mask, | |
encoder_hidden_states_spatial, | |
encoder_attention_mask, | |
timestep_spatial, | |
cross_attention_kwargs, | |
class_labels, | |
pos_hw, | |
pos_hw, | |
hw, | |
use_reentrant=False, | |
) | |
if enable_temporal_attentions: | |
hidden_states = rearrange(hidden_states, "(b f) t d -> (b t) f d", b=input_batch_size).contiguous() | |
if use_image_num != 0: # image-video joitn training | |
hidden_states_video = hidden_states[:, :frame, ...] | |
hidden_states_image = hidden_states[:, frame:, ...] | |
# if i == 0 and not self.use_rope: | |
if i == 0: | |
hidden_states_video = hidden_states_video + temp_pos_embed | |
hidden_states_video = torch.utils.checkpoint.checkpoint( | |
temp_block, | |
hidden_states_video, | |
None, # attention_mask | |
None, # encoder_hidden_states | |
None, # encoder_attention_mask | |
timestep_temp, | |
cross_attention_kwargs, | |
class_labels, | |
pos_t, | |
pos_t, | |
(frame,), | |
use_reentrant=False, | |
) | |
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) | |
hidden_states = rearrange( | |
hidden_states, "(b t) f d -> (b f) t d", b=input_batch_size | |
).contiguous() | |
else: | |
# if i == 0 and not self.use_rope: | |
if i == 0: | |
hidden_states = hidden_states + temp_pos_embed | |
hidden_states = torch.utils.checkpoint.checkpoint( | |
temp_block, | |
hidden_states, | |
None, # attention_mask | |
None, # encoder_hidden_states | |
None, # encoder_attention_mask | |
timestep_temp, | |
cross_attention_kwargs, | |
class_labels, | |
pos_t, | |
pos_t, | |
(frame,), | |
use_reentrant=False, | |
) | |
hidden_states = rearrange( | |
hidden_states, "(b t) f d -> (b f) t d", b=input_batch_size | |
).contiguous() | |
else: | |
hidden_states = spatial_block( | |
hidden_states, | |
attention_mask_compress if i >= self.num_layers // 2 else attention_mask, | |
encoder_hidden_states_spatial, | |
encoder_attention_mask, | |
timestep_spatial, | |
cross_attention_kwargs, | |
class_labels, | |
pos_hw, | |
pos_hw, | |
hw, | |
org_timestep, | |
all_timesteps=all_timesteps, | |
) | |
if enable_temporal_attentions: | |
# b c f h w, f = 16 + 4 | |
hidden_states = rearrange(hidden_states, "(b f) t d -> (b t) f d", b=input_batch_size).contiguous() | |
if use_image_num != 0 and self.training: | |
hidden_states_video = hidden_states[:, :frame, ...] | |
hidden_states_image = hidden_states[:, frame:, ...] | |
# if i == 0 and not self.use_rope: | |
# hidden_states_video = hidden_states_video + temp_pos_embed | |
hidden_states_video = temp_block( | |
hidden_states_video, | |
None, # attention_mask | |
None, # encoder_hidden_states | |
None, # encoder_attention_mask | |
timestep_temp, | |
cross_attention_kwargs, | |
class_labels, | |
pos_t, | |
pos_t, | |
(frame,), | |
org_timestep, | |
) | |
hidden_states = torch.cat([hidden_states_video, hidden_states_image], dim=1) | |
hidden_states = rearrange( | |
hidden_states, "(b t) f d -> (b f) t d", b=input_batch_size | |
).contiguous() | |
else: | |
# if i == 0 and not self.use_rope: | |
if i == 0: | |
hidden_states = hidden_states + temp_pos_embed | |
hidden_states = temp_block( | |
hidden_states, | |
None, # attention_mask | |
None, # encoder_hidden_states | |
None, # encoder_attention_mask | |
timestep_temp, | |
cross_attention_kwargs, | |
class_labels, | |
pos_t, | |
pos_t, | |
(frame,), | |
org_timestep, | |
all_timesteps=all_timesteps, | |
) | |
hidden_states = rearrange( | |
hidden_states, "(b t) f d -> (b f) t d", b=input_batch_size | |
).contiguous() | |
if enable_sequence_parallel(): | |
hidden_states = self.gather_from_second_dim(hidden_states, input_batch_size) | |
if self.is_input_patches: | |
if self.config.norm_type != "ada_norm_single": | |
conditioning = self.transformer_blocks[0].norm1.emb( | |
timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] | |
hidden_states = self.proj_out_2(hidden_states) | |
elif self.config.norm_type == "ada_norm_single": | |
embedded_timestep = repeat(embedded_timestep, "b d -> (b f) d", f=frame + use_image_num).contiguous() | |
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) | |
hidden_states = self.norm_out(hidden_states) | |
# Modulation | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.proj_out(hidden_states) | |
# unpatchify | |
if self.adaln_single is None: | |
height = width = int(hidden_states.shape[1] ** 0.5) | |
hidden_states = hidden_states.reshape( | |
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) | |
) | |
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) | |
output = hidden_states.reshape( | |
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) | |
) | |
output = rearrange(output, "(b f) c h w -> b c f h w", b=input_batch_size).contiguous() | |
# 3. Gather batch for data parallelism | |
if get_cfg_parallel_size() > 1: | |
output = gather_sequence(output, get_cfg_parallel_group(), dim=0) | |
if not return_dict: | |
return (output,) | |
return Transformer3DModelOutput(sample=output) | |
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, **kwargs): | |
if subfolder is not None: | |
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) | |
config_file = os.path.join(pretrained_model_path, "config.json") | |
if not os.path.isfile(config_file): | |
raise RuntimeError(f"{config_file} does not exist") | |
with open(config_file, "r") as f: | |
config = json.load(f) | |
model = cls.from_config(config, **kwargs) | |
return model | |
def split_from_second_dim(self, x, batch_size): | |
x = x.view(batch_size, -1, *x.shape[1:]) | |
x = split_sequence(x, get_sequence_parallel_group(), dim=1, grad_scale="down", pad=get_temporal_pad()) | |
x = x.reshape(-1, *x.shape[2:]) | |
return x | |
def gather_from_second_dim(self, x, batch_size): | |
x = x.view(batch_size, -1, *x.shape[1:]) | |
x = gather_sequence(x, get_sequence_parallel_group(), dim=1, grad_scale="up", pad=get_temporal_pad()) | |
x = x.reshape(-1, *x.shape[2:]) | |
return x | |
# depth = num_layers * 2 | |
def LatteT2V_XL_122(**kwargs): | |
return LatteT2V( | |
num_layers=28, | |
attention_head_dim=72, | |
num_attention_heads=16, | |
patch_size_t=1, | |
patch_size=2, | |
norm_type="ada_norm_single", | |
caption_channels=4096, | |
cross_attention_dim=1152, | |
**kwargs, | |
) | |
def LatteT2V_D64_XL_122(**kwargs): | |
return LatteT2V( | |
num_layers=28, | |
attention_head_dim=64, | |
num_attention_heads=18, | |
patch_size_t=1, | |
patch_size=2, | |
norm_type="ada_norm_single", | |
caption_channels=4096, | |
cross_attention_dim=1152, | |
**kwargs, | |
) | |
Latte_models = { | |
"LatteT2V-XL/122": LatteT2V_XL_122, | |
"LatteT2V-D64-XL/122": LatteT2V_D64_XL_122, | |
} | |