Spaces:
Sleeping
Sleeping
# Adapted from CogVideo | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# -------------------------------------------------------- | |
# References: | |
# CogVideo: https://github.com/THUDM/CogVideo | |
# diffusers: https://github.com/huggingface/diffusers | |
# -------------------------------------------------------- | |
import inspect | |
import math | |
from typing import Callable, Dict, List, Optional, Tuple, Union | |
import torch | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.video_processor import VideoProcessor | |
from transformers import T5EncoderModel, T5Tokenizer | |
from videosys.core.pab_mgr import PABConfig, set_pab_manager, update_steps | |
from videosys.core.pipeline import VideoSysPipeline, VideoSysPipelineOutput | |
from videosys.models.autoencoders.autoencoder_kl_cogvideox import AutoencoderKLCogVideoX | |
from videosys.models.modules.embeddings import get_3d_rotary_pos_embed | |
from videosys.models.transformers.cogvideox_transformer_3d import CogVideoXTransformer3DModel | |
from videosys.schedulers.scheduling_ddim_cogvideox import CogVideoXDDIMScheduler | |
from videosys.schedulers.scheduling_dpm_cogvideox import CogVideoXDPMScheduler | |
from videosys.utils.logging import logger | |
from videosys.utils.utils import save_video | |
class CogVideoXPABConfig(PABConfig): | |
def __init__( | |
self, | |
steps: int = 50, | |
spatial_broadcast: bool = True, | |
spatial_threshold: list = [100, 850], | |
spatial_range: int = 2, | |
): | |
super().__init__( | |
steps=steps, | |
spatial_broadcast=spatial_broadcast, | |
spatial_threshold=spatial_threshold, | |
spatial_range=spatial_range, | |
) | |
class CogVideoXConfig: | |
""" | |
This config is to instantiate a `CogVideoXPipeline` class for video generation. | |
To be specific, this config will be passed to engine by `VideoSysEngine(config)`. | |
In the engine, it will be used to instantiate the corresponding pipeline class. | |
And the engine will call the `generate` function of the pipeline to generate the video. | |
If you want to explore the detail of generation, please refer to the pipeline class below. | |
Args: | |
model_path (str): | |
A path to the pretrained pipeline. Defaults to "THUDM/CogVideoX-2b". | |
num_gpus (int): | |
The number of GPUs to use. Defaults to 1. | |
cpu_offload (bool): | |
Whether to enable CPU offload. Defaults to False. | |
vae_tiling (bool): | |
Whether to enable tiling for the VAE. Defaults to True. | |
enable_pab (bool): | |
Whether to enable Pyramid Attention Broadcast. Defaults to False. | |
pab_config (CogVideoXPABConfig): | |
The configuration for Pyramid Attention Broadcast. Defaults to `CogVideoXPABConfig()`. | |
Examples: | |
```python | |
from videosys import CogVideoXConfig, VideoSysEngine | |
# models: "THUDM/CogVideoX-2b" or "THUDM/CogVideoX-5b" | |
# change num_gpus for multi-gpu inference | |
config = CogVideoXConfig("THUDM/CogVideoX-2b", num_gpus=1) | |
engine = VideoSysEngine(config) | |
prompt = "Sunset over the sea." | |
# num frames should be <= 49. resolution is fixed to 720p. | |
video = engine.generate( | |
prompt=prompt, | |
guidance_scale=6, | |
num_inference_steps=50, | |
num_frames=49, | |
).video[0] | |
engine.save_video(video, f"./outputs/{prompt}.mp4") | |
``` | |
""" | |
def __init__( | |
self, | |
model_path: str = "THUDM/CogVideoX-2b", | |
# ======= distributed ======== | |
num_gpus: int = 1, | |
# ======= memory ======= | |
cpu_offload: bool = False, | |
vae_tiling: bool = True, | |
# ======= pab ======== | |
enable_pab: bool = False, | |
pab_config=CogVideoXPABConfig(), | |
): | |
self.model_path = model_path | |
self.pipeline_cls = CogVideoXPipeline | |
# ======= distributed ======== | |
self.num_gpus = num_gpus | |
# ======= memory ======== | |
self.cpu_offload = cpu_offload | |
self.vae_tiling = vae_tiling | |
# ======= pab ======== | |
self.enable_pab = enable_pab | |
self.pab_config = pab_config | |
class CogVideoXPipeline(VideoSysPipeline): | |
_optional_components = ["tokenizer", "text_encoder", "vae", "transformer", "scheduler"] | |
model_cpu_offload_seq = "text_encoder->transformer->vae" | |
_callback_tensor_inputs = [ | |
"latents", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
] | |
def __init__( | |
self, | |
config: CogVideoXConfig, | |
tokenizer: Optional[T5Tokenizer] = None, | |
text_encoder: Optional[T5EncoderModel] = None, | |
vae: Optional[AutoencoderKLCogVideoX] = None, | |
transformer: Optional[CogVideoXTransformer3DModel] = None, | |
scheduler: Optional[CogVideoXDDIMScheduler] = None, | |
device: torch.device = torch.device("cuda"), | |
dtype: torch.dtype = torch.bfloat16, | |
): | |
super().__init__() | |
self._config = config | |
self._device = device | |
if config.model_path == "THUDM/CogVideoX-2b": | |
dtype = torch.float16 | |
self._dtype = dtype | |
if transformer is None: | |
transformer = CogVideoXTransformer3DModel.from_pretrained( | |
config.model_path, subfolder="transformer", torch_dtype=self._dtype | |
) | |
if vae is None: | |
vae = AutoencoderKLCogVideoX.from_pretrained(config.model_path, subfolder="vae", torch_dtype=self._dtype) | |
if tokenizer is None: | |
tokenizer = T5Tokenizer.from_pretrained(config.model_path, subfolder="tokenizer") | |
if text_encoder is None: | |
text_encoder = T5EncoderModel.from_pretrained( | |
config.model_path, subfolder="text_encoder", torch_dtype=self._dtype | |
) | |
if scheduler is None: | |
scheduler = CogVideoXDDIMScheduler.from_pretrained( | |
config.model_path, | |
subfolder="scheduler", | |
) | |
# set eval and device | |
self.set_eval_and_device(self._device, text_encoder, vae, transformer) | |
self.register_modules( | |
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler | |
) | |
# cpu offload | |
if config.cpu_offload: | |
self.enable_model_cpu_offload() | |
# vae tiling | |
if config.vae_tiling: | |
vae.enable_tiling() | |
# pab | |
if config.enable_pab: | |
set_pab_manager(config.pab_config) | |
self.vae_scale_factor_spatial = ( | |
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 | |
) | |
self.vae_scale_factor_temporal = ( | |
self.vae.config.temporal_compression_ratio if hasattr(self, "vae") and self.vae is not None else 4 | |
) | |
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial) | |
def _get_t5_prompt_embeds( | |
self, | |
prompt: Union[str, List[str]] = None, | |
num_videos_per_prompt: int = 1, | |
max_sequence_length: int = 226, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
): | |
device = device or self._execution_device | |
dtype = dtype or self.text_encoder.dtype | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
batch_size = len(prompt) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=max_sequence_length, | |
truncation=True, | |
add_special_tokens=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): | |
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because `max_sequence_length` is set to " | |
f" {max_sequence_length} tokens: {removed_text}" | |
) | |
prompt_embeds = self.text_encoder(text_input_ids.to(device))[0] | |
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
_, seq_len, _ = prompt_embeds.shape | |
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
return prompt_embeds | |
def encode_prompt( | |
self, | |
prompt: Union[str, List[str]], | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
do_classifier_free_guidance: bool = True, | |
num_videos_per_prompt: int = 1, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
max_sequence_length: int = 226, | |
device: Optional[torch.device] = None, | |
dtype: Optional[torch.dtype] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
Whether to use classifier free guidance or not. | |
num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
device: (`torch.device`, *optional*): | |
torch device | |
dtype: (`torch.dtype`, *optional*): | |
torch dtype | |
""" | |
device = device or self._execution_device | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
if prompt is not None: | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
prompt_embeds = self._get_t5_prompt_embeds( | |
prompt=prompt, | |
num_videos_per_prompt=num_videos_per_prompt, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
) | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = negative_prompt or "" | |
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
if prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
negative_prompt_embeds = self._get_t5_prompt_embeds( | |
prompt=negative_prompt, | |
num_videos_per_prompt=num_videos_per_prompt, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
dtype=dtype, | |
) | |
return prompt_embeds, negative_prompt_embeds | |
def prepare_latents( | |
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
): | |
shape = ( | |
batch_size, | |
(num_frames - 1) // self.vae_scale_factor_temporal + 1, | |
num_channels_latents, | |
height // self.vae_scale_factor_spatial, | |
width // self.vae_scale_factor_spatial, | |
) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def decode_latents(self, latents: torch.Tensor) -> torch.Tensor: | |
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width] | |
latents = 1 / self.vae.config.scaling_factor * latents | |
frames = self.vae.decode(latents).sample | |
return frames | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
# Copied from diffusers.pipelines.latte.pipeline_latte.LattePipeline.check_inputs | |
def check_inputs( | |
self, | |
prompt, | |
height, | |
width, | |
negative_prompt, | |
callback_on_step_end_tensor_inputs, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
): | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
def fuse_qkv_projections(self) -> None: | |
r"""Enables fused QKV projections.""" | |
self.fusing_transformer = True | |
self.transformer.fuse_qkv_projections() | |
def unfuse_qkv_projections(self) -> None: | |
r"""Disable QKV projection fusion if enabled.""" | |
if not self.fusing_transformer: | |
logger.warning("The Transformer was not initially fused for QKV projections. Doing nothing.") | |
else: | |
self.transformer.unfuse_qkv_projections() | |
self.fusing_transformer = False | |
def _prepare_rotary_positional_embeddings( | |
self, | |
height: int, | |
width: int, | |
num_frames: int, | |
device: torch.device, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
grid_height = height // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
grid_width = width // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
base_size_width = 720 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
base_size_height = 480 // (self.vae_scale_factor_spatial * self.transformer.config.patch_size) | |
grid_crops_coords = get_resize_crop_region_for_grid( | |
(grid_height, grid_width), base_size_width, base_size_height | |
) | |
freqs_cos, freqs_sin = get_3d_rotary_pos_embed( | |
embed_dim=self.transformer.config.attention_head_dim, | |
crops_coords=grid_crops_coords, | |
grid_size=(grid_height, grid_width), | |
temporal_size=num_frames, | |
use_real=True, | |
) | |
freqs_cos = freqs_cos.to(device=device) | |
freqs_sin = freqs_sin.to(device=device) | |
return freqs_cos, freqs_sin | |
def guidance_scale(self): | |
return self._guidance_scale | |
def num_timesteps(self): | |
return self._num_timesteps | |
def interrupt(self): | |
return self._interrupt | |
def generate( | |
self, | |
prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
height: int = 480, | |
width: int = 720, | |
num_frames: int = 49, | |
num_inference_steps: int = 50, | |
timesteps: Optional[List[int]] = None, | |
guidance_scale: float = 6, | |
use_dynamic_cfg: bool = False, | |
num_videos_per_prompt: int = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: str = "pil", | |
return_dict: bool = True, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 226, | |
) -> Union[VideoSysPipelineOutput, Tuple]: | |
""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
num_frames (`int`, defaults to `48`): | |
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will | |
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where | |
num_seconds is 6 and fps is 4. However, since videos can be saved at any fps, the only condition that | |
needs to be satisfied is that of divisibility mentioned above. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
guidance_scale (`float`, *optional*, defaults to 7.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
num_videos_per_prompt (`int`, *optional*, defaults to 1): | |
The number of videos to generate per prompt. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
max_sequence_length (`int`, defaults to `226`): | |
Maximum sequence length in encoded prompt. Must be consistent with | |
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results. | |
Examples: | |
Returns: | |
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] or `tuple`: | |
[`~pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
if num_frames > 49: | |
raise ValueError( | |
"The number of frames must be less than 49 for now due to static positional embeddings. This will be updated in the future to remove this limitation." | |
) | |
update_steps(num_inference_steps) | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
height = height or self.transformer.config.sample_size * self.vae_scale_factor_spatial | |
width = width or self.transformer.config.sample_size * self.vae_scale_factor_spatial | |
num_videos_per_prompt = 1 | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
height, | |
width, | |
negative_prompt, | |
callback_on_step_end_tensor_inputs, | |
prompt_embeds, | |
negative_prompt_embeds, | |
) | |
self._guidance_scale = guidance_scale | |
self._interrupt = False | |
# 2. Default call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
negative_prompt, | |
do_classifier_free_guidance, | |
num_videos_per_prompt=num_videos_per_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
max_sequence_length=max_sequence_length, | |
device=device, | |
) | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
self._num_timesteps = len(timesteps) | |
# 5. Prepare latents. | |
latent_channels = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_videos_per_prompt, | |
latent_channels, | |
num_frames, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Create rotary embeds if required | |
image_rotary_emb = ( | |
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) | |
if self.transformer.config.use_rotary_positional_embeddings | |
else None | |
) | |
# 8. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
# for DPM-solver++ | |
old_pred_original_sample = None | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0]) | |
# predict noise model_output | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
encoder_hidden_states=prompt_embeds, | |
timestep=timestep, | |
image_rotary_emb=image_rotary_emb, | |
return_dict=False, | |
)[0] | |
noise_pred = noise_pred.float() | |
# perform guidance | |
if use_dynamic_cfg: | |
self._guidance_scale = 1 + guidance_scale * ( | |
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 | |
) | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
if not isinstance(self.scheduler, CogVideoXDPMScheduler): | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
else: | |
latents, old_pred_original_sample = self.scheduler.step( | |
noise_pred, | |
old_pred_original_sample, | |
t, | |
timesteps[i - 1] if i > 0 else None, | |
latents, | |
**extra_step_kwargs, | |
return_dict=False, | |
) | |
latents = latents.to(prompt_embeds.dtype) | |
# call the callback, if provided | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if not output_type == "latent": | |
video = self.decode_latents(latents) | |
video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
else: | |
video = latents | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (video,) | |
return VideoSysPipelineOutput(video=video) | |
def save_video(self, video, output_path): | |
save_video(video, output_path, fps=8) | |
# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid | |
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | |
tw = tgt_width | |
th = tgt_height | |
h, w = src | |
r = h / w | |
if r > (th / tw): | |
resize_height = th | |
resize_width = int(round(th / h * w)) | |
else: | |
resize_width = tw | |
resize_height = int(round(tw / w * h)) | |
crop_top = int(round((th - resize_height) / 2.0)) | |
crop_left = int(round((tw - resize_width) / 2.0)) | |
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |