Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,049 Bytes
7c1a14b f0212d7 c186cfb abfb3a3 f0212d7 7c1a14b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
## ___***DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos***___
<div align="center">
<img src='https://depthcrafter.github.io/img/logo.png' style="height:140px"></img>
<a href='https://arxiv.org/abs/2409.02095'><img src='https://img.shields.io/badge/arXiv-2409.02095-b31b1b.svg'></a>
<a href='https://depthcrafter.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
_**[Wenbo Hu<sup>1* †</sup>](https://wbhu.github.io),
[Xiangjun Gao<sup>2*</sup>](https://scholar.google.com/citations?user=qgdesEcAAAAJ&hl=en),
[Xiaoyu Li<sup>1* †</sup>](https://xiaoyu258.github.io),
[Sijie Zhao<sup>1</sup>](https://scholar.google.com/citations?user=tZ3dS3MAAAAJ&hl=en),
[Xiaodong Cun<sup>1</sup>](https://vinthony.github.io/academic), <br>
[Yong Zhang<sup>1</sup>](https://yzhang2016.github.io),
[Long Quan<sup>2</sup>](https://home.cse.ust.hk/~quan),
[Ying Shan<sup>3, 1</sup>](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en)**_
<br><br>
<sup>1</sup>Tencent AI Lab
<sup>2</sup>The Hong Kong University of Science and Technology
<sup>3</sup>ARC Lab, Tencent PCG
arXiv preprint, 2024
</div>
## π Introduction
- [24-9-19] Add scripts for preparing benchmark datasets.
- [24-9-18] Add point cloud sequence visualization.
- [24-9-14] π₯π₯π₯ **DepthCrafter** is released now, have fun!
π€ DepthCrafter can generate temporally consistent long depth sequences with fine-grained details for open-world videos,
without requiring additional information such as camera poses or optical flow.
## π₯ Visualization
We provide some demos of unprojected point cloud sequences, with reference RGB and estimated depth videos.
Please refer to our [project page](https://depthcrafter.github.io) for more details.
https://github.com/user-attachments/assets/62141cc8-04d0-458f-9558-fe50bc04cc21
## π Quick Start
### π οΈ Installation
1. Clone this repo:
```bash
git clone https://github.com/Tencent/DepthCrafter.git
```
2. Install dependencies (please refer to [requirements.txt](requirements.txt)):
```bash
pip install -r requirements.txt
```
## π€ Model Zoo
[DepthCrafter](https://huggingface.co/tencent/DepthCrafter) is available in the Hugging Face Model Hub.
### πββοΈ Inference
#### 1. High-resolution inference, requires a GPU with ~26GB memory for 1024x576 resolution:
- Full inference (~0.6 fps on A100, recommended for high-quality results):
```bash
python run.py --video-path examples/example_01.mp4
```
- Fast inference through 4-step denoising and without classifier-free guidance οΌ~2.3 fps on A100οΌ:
```bash
python run.py --video-path examples/example_01.mp4 --num-inference-steps 4 --guidance-scale 1.0
```
#### 2. Low-resolution inference, requires a GPU with ~9GB memory for 512x256 resolution:
- Full inference (~2.3 fps on A100):
```bash
python run.py --video-path examples/example_01.mp4 --max-res 512
```
- Fast inference through 4-step denoising and without classifier-free guidance (~9.4 fps on A100):
```bash
python run.py --video-path examples/example_01.mp4 --max-res 512 --num-inference-steps 4 --guidance-scale 1.0
```
## π€ Gradio Demo
We provide a local Gradio demo for DepthCrafter, which can be launched by running:
```bash
gradio app.py
```
## π€ Contributing
- Welcome to open issues and pull requests.
- Welcome to optimize the inference speed and memory usage, e.g., through model quantization, distillation, or other acceleration techniques.
## π Citation
If you find this work helpful, please consider citing:
```bibtex
@article{hu2024-DepthCrafter,
author = {Hu, Wenbo and Gao, Xiangjun and Li, Xiaoyu and Zhao, Sijie and Cun, Xiaodong and Zhang, Yong and Quan, Long and Shan, Ying},
title = {DepthCrafter: Generating Consistent Long Depth Sequences for Open-world Videos},
journal = {arXiv preprint arXiv:2409.02095},
year = {2024}
}
```
|