Spaces:
Runtime error
Runtime error
File size: 21,789 Bytes
3b33e85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
import gradio as gr
from huggingface_hub import login
import re
# from vllm import LLM, SamplingParams
import pandas as pd
from collections import Counter
from datasets import load_dataset, Dataset, concatenate_datasets
from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor, TimeoutError
import os
from typing import Dict, Any, List
# code execution
import os
import re
import signal
import subprocess
import tempfile
from contextlib import contextmanager
from typing import Tuple
from transformers import PreTrainedTokenizer, set_seed
import torch
from tqdm import tqdm
import time
from sympy import N, simplify
from sympy.parsing.latex import parse_latex
import random
from pathlib import Path
from openai import OpenAI
client = OpenAI(
base_url="https://ji0rhe7rvh6wrfmq.us-east-1.aws.endpoints.huggingface.cloud/v1/",
api_key=os.environ.get("HF_TOKEN"),
)
@dataclass
class Config:
model_id: str # SELECT MODEL
revision: str # SELECT REVISION
# Append an optional system prompt to each problem
system_prompt: str
# Number of samples to generate per problem
num_samples: int
num_generations: int
# Generation parameters
do_sample: bool
temperature: float
top_p: float
top_k: int
max_new_tokens: int
restart_on_fail: bool
# Enable 4-bit quantization
is_quantized: bool
# Run on train or test data?
is_submission: bool = True if os.getenv("KAGGLE_IS_COMPETITION_RERUN") else False
validation_set: str = "kaggle-validation-set-medium"
notebook_time_limit: int = 9 * 60 * 60 - 15 * 60 # 9 hours - 15 minute buffer
# Debug by solving only the first problem
debug: bool = False
# Push solutions to the Hub
push_to_hub: bool = False
class PythonREPL:
def __init__(self, timeout=5):
self.timeout = timeout
def execute(self, query: str) -> Tuple[bool, str]:
query = "import math\nimport numpy as np\nimport sympy as sp\n" + query
query = query.strip().split("\n")
if "print(" not in query[-1]:
if "#" in query[-1]:
query[-1] = query[-1].split("#")[0]
query[-1] = "print(" + query[-1] + ")"
query = "\n".join(query)
with tempfile.TemporaryDirectory() as temp_dir:
temp_file_path = os.path.join(temp_dir, "tmp.py")
with open(temp_file_path, "w") as f:
f.write(query)
result = subprocess.run(
["python3", temp_file_path],
capture_output=True,
check=False,
text=True,
timeout=self.timeout,
)
if result.returncode == 0:
output = result.stdout
return True, output.strip()
else:
error_msg = result.stderr.strip()
msgs = error_msg.split("\n")
new_msgs = []
want_next = False
for m in msgs:
if "Traceback" in m:
new_msgs.append(m)
elif m == msgs[-1]:
new_msgs.append(m)
elif temp_file_path in m:
st = m.index('"/') + 1 if '"/' in m else 0
ed = m.index(temp_file_path) + 1 if temp_file_path in m else None
clr = m[st:ed] if not ed else m[st:]
m = m.replace(clr, "")
new_msgs.append(m)
want_next = True
elif want_next:
new_msgs.append(m)
want_next = False
error_msg = "\n".join(new_msgs)
return False, error_msg.strip()
def __call__(self, query: str) -> Tuple[bool, str]:
with ThreadPoolExecutor() as executor:
future = executor.submit(self.execute, query)
try:
return future.result(timeout=self.timeout)
except TimeoutError:
return False, f"Timed out after {self.timeout} seconds."
def execute_completion(
executor: PythonREPL,
completion: str,
return_status: bool = False,
last_code_block: bool = False,
) -> str | Tuple[str, bool]:
# executions = ["!" + code for code in re.findall(r"```bash(.*?)```", completion, re.DOTALL) if "!" not in code]
executions = re.findall(r"```python(.*?)```", completion, re.DOTALL)
if len(executions) == 0: # directly return cot result
return completion, False if return_status else completion
else:
if last_code_block:
executions = [executions[-1]]
# Python
execution_outputs = []
successes = []
for code in executions:
success = False
if "subprocess" in code:
output = "subprocess is not allowed"
execution_outputs.append(output)
successes.append(success)
continue
if "venv" in code:
output = "venv is not allowed"
execution_outputs.append(output)
successes.append(success)
continue
try:
success, output = executor(code)
except TimeoutError as e:
print("time out")
output = e
if not success and not return_status:
output = ""
execution_outputs.append(output)
successes.append(success)
output = str(execution_outputs[-1]).strip()
success = successes[-1]
if return_status:
return output, success
else:
return output
def postprocess_completion(
text: str, return_status: bool = False, last_code_block=False, timeout=5
) -> str | Tuple[str, bool]:
executor = PythonREPL(timeout=timeout)
result = execute_completion(executor, text, return_status=return_status, last_code_block=last_code_block)
del executor
return result
def apply_template(example: Dict[str, Any], prompt: str) -> Dict[str, Any]:
return prompt.format(example["prompt"], "{}")
def last_boxed_only_string(string):
"""
Extracts the last LaTeX boxed or framed expression from a string.
Args:
string (str): The input string containing LaTeX expressions.
Returns:
str or None: The last boxed or framed expression, if found;
otherwise, None.
"""
idx = string.rfind("\\boxed")
if idx < 0:
idx = string.rfind("\\fbox")
if idx < 0:
return None
i = idx
right_brace_idx = None
num_left_braces_open = 0
while i < len(string):
if string[i] == "{":
num_left_braces_open += 1
if string[i] == "}":
num_left_braces_open -= 1
if num_left_braces_open == 0:
right_brace_idx = i
break
i += 1
if right_brace_idx is None:
retval = None
else:
retval = string[idx : right_brace_idx + 1]
return retval
def remove_boxed(s):
"""
Removes the LaTeX boxed command, returning the content inside the braces.
Args:
s (str): The string containing a LaTeX boxed expression.
Returns:
str or None: The content inside the boxed command, if valid;
otherwise, None.
"""
left = "\\boxed{"
try:
assert s[: len(left)] == left
assert s[-1] == "}"
length = len(left)
return s[length:-1]
except Exception:
return None
def extract_boxed_answer(pred_str, strip_double_curly_brace=False):
"""
Extracts the answer from a LaTeX boxed expression within
a prediction string.
Args:
pred_str (str): The string containing one or more LaTeX
boxed expressions.
strip_double_curly_brace (bool): If True, removes an additional
layer of braces.
Returns:
str or None: The extracted answer, if any; otherwise, None.
"""
boxed_str = last_boxed_only_string(pred_str)
if boxed_str is None:
return None
answer = remove_boxed(boxed_str)
if answer is None:
return None
if strip_double_curly_brace:
match = re.match("^\{(.*)\}$", answer) # noqa: W605
if match:
answer = match.group(1)
return answer
def normalize_final_answer(final_answer: str) -> str:
"""
Normalizes a final answer string by removing or replacing various LaTeX
and text elements.
Args:
final_answer (str): The answer string to normalize.
Returns:
str: The normalized answer string.
"""
match = re.search(r"(.*?)Problem:", final_answer, flags=re.S)
if match:
final_answer = match.group(1) # 返回匹配的第一部分,即"Problem"之前的所有文本
"""Normalize a final answer to a quantitative reasoning question."""
# final_answer = final_answer.split('=')[-1]
SUBSTITUTIONS = [
("an ", ""),
("a ", ""),
(".$", "$"),
("\\$", ""),
(r"\ ", ""),
(" ", ""),
("mbox", "text"),
(",\\text{and}", ","),
("\\text{and}", ","),
("\\text{m}", "\\text{}"),
("\\le", "<"),
]
REMOVED_EXPRESSIONS = [
"square",
"ways",
"integers",
"dollars",
"mph",
"inches",
"ft",
"hours",
"km",
"units",
"\\ldots",
"sue",
"points",
"feet",
"minutes",
"digits",
"cents",
"degrees",
"cm",
"gm",
"pounds",
"meters",
"meals",
"edges",
"students",
"childrentickets",
"multiples",
"\\text{s}",
"\\text{.}",
"\\text{\ns}",
"\\text{}^2",
"\\text{}^3",
"\\text{\n}",
"\\text{}",
r"\mathrm{th}",
r"^\circ",
r"^{\circ}",
r"\;",
r",\!",
"{,}",
'"',
"\\dots",
"\n",
"\r",
"\f",
"\%",
]
for before, after in SUBSTITUTIONS:
final_answer = final_answer.replace(before, after)
for expr in REMOVED_EXPRESSIONS:
final_answer = final_answer.replace(expr, "")
# Extract answer that is in LaTeX math, is bold,
# is surrounded by a box, etc.
final_answer = re.sub(r"(\\text\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\textbf\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\overline\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\boxed\{)(.*)(\})", "\\2", final_answer)
assert "\n" not in final_answer
assert "\r" not in final_answer
assert "\f" not in final_answer
if len(re.findall(r"finalansweris(.*)", final_answer)) > 0:
final_answer = re.findall(r"finalansweris(.*)", final_answer)[-1]
if len(re.findall(r"answer?is:?(.*)", final_answer)) > 0:
final_answer = re.findall(r"answer?is:?(.*)", final_answer)[-1]
if len(re.findall(r"oxed\{(.*?)\}", final_answer)) > 0:
final_answer = re.findall(r"oxed\{(.*?)\}", final_answer)[-1]
if len(re.findall(r"\$(.*?)\$", final_answer)) > 0:
final_answer = re.findall(r"\$(.*?)\$", final_answer)[-1]
final_answer = final_answer.strip()
if "rac" in final_answer and "\\frac" not in final_answer:
final_answer = final_answer.replace("rac", "\\frac")
final_answer = re.sub(r"(frac)([^{])(.)", "frac{\\2}{\\3}", final_answer)
final_answer = re.sub(r"(sqrt)([^{])", "sqrt{\\2}", final_answer)
final_answer = final_answer.replace("$", "")
if final_answer.replace(",", "").isdigit():
final_answer = final_answer.replace(",", "")
return final_answer
def naive_parse(answer: str) -> str:
"""
Extracts and returns the numeric digits from the input string, processing them in reverse order
until a non-numeric character is encountered after encountering the first numeric character.
Args:
answer (str): The input string to parse.
Returns:
str: A string consisting of the numeric digits extracted from the input, in their original order.
Example:
>>> naive_parse("abc123def")
'123'
>>> naive_parse("def456ghi")
'456'
>>> naive_parse("no numbers here")
''
"""
out = []
start = False
end = False
for l in reversed(list(answer)):
if l in "0123456789" and not end:
start = True
out.append(l)
else:
if start:
end = True
out = reversed(out)
return "".join(out)
def validate_answer_is_numeric(x: str | int | float) -> int:
FLOAT_TOLERANCE = 0.2
try:
x = round(float(x))
f = float(x)
if abs(x - f) > FLOAT_TOLERANCE:
x = -1
except Exception:
x = -1
return x
def get_majority_vote(responses: List[int]) -> int:
if len(responses) < 1:
return 0
else:
c = Counter(responses)
value, count = c.most_common()[0]
return value
def filter_answers(answers: List[str]) -> List[int]:
formatted_answers = [validate_answer_is_numeric(a) for a in answers]
# Filter for non-negative answers
formatted_answers = [a for a in formatted_answers if a >= 0]
# Compute modulo
formatted_answers = [a % 1_000 for a in formatted_answers]
# less than 2.1 billion or cannot convert to C int (32-bit)
formatted_answers = [a for a in formatted_answers if a <= 999]
return formatted_answers
def check_sympy_equivalence(ref_answer: str, model_answer: str) -> bool:
def do_answers_match(ref_answer: str, model_answer: str) -> bool:
ref_sympy = parse_latex(ref_answer)
model_sympy = parse_latex(model_answer)
diff = simplify(ref_sympy - model_sympy)
return True if -1e-12 < N(diff) < 1e-12 or diff.is_zero else False
try:
result = do_answers_match(ref_answer, model_answer)
return result
except Exception as e:
print(e)
return False
def check_string_match(ref_answer: str, model_answer: str) -> bool:
try:
return ref_answer == model_answer
except Exception as e:
print(e)
return False
def check_answer(ref_answer: str, model_answer: str) -> bool:
# check if strings are the same
correct = check_string_match(ref_answer, model_answer)
if correct:
return True
# use the sympy library to check if the expressions are the same
correct = check_sympy_equivalence(ref_answer, model_answer)
if correct:
return True
return False
debug = False
model_id = "Numina-Math-7B"
revision = "main"
system_prompt = "{}"
validation_set = "kaggle-validation-set-medium"
is_submission = True
num_samples = 4
num_generations = 4
temperature = 0.8
is_quantized = False
restart_on_fail = False
top_p = 1.0
top_k = 0
max_new_tokens = 2048
# Papermill related variables
push_to_hub = False
notebook_name = ""
config = Config(
debug=debug,
push_to_hub=push_to_hub,
model_id=model_id,
revision=revision,
system_prompt=system_prompt,
validation_set=validation_set,
is_quantized=is_quantized,
restart_on_fail=restart_on_fail,
is_submission=is_submission,
num_samples=num_samples,
num_generations=num_generations,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
max_new_tokens=max_new_tokens,
)
print(f"=== Running submission with config ===\n\n{config}")
def generate(message):
chat_completion = client.chat.completions.create(
model="tgi",
messages=message,
stream=True,
max_tokens=1024,
stop=["```output\n"],
temperature=temperature,
)
for message in chat_completion:
yield message.choices[0].delta.content
def get_majority_text(data):
from collections import Counter
# Count the frequency of each answer in model_answers
answer_counts = Counter(data["model_answers"])
# Find the majority response
majority_response = answer_counts.most_common(1)[0][0]
# Find the index of the first occurrence of the majority response
majority_index = data["model_answers"].index(majority_response)
# Return the corresponding text in gen_texts
return data["gen_texts"][majority_index]
def extract_solution(text):
# Split the text at "### Solution:"
parts = text.split("### Solution:", 1)
if len(parts) > 1:
# Return everything after "### Solution:"
return parts[1].strip()
else:
# Return an empty string if "### Solution:" is not found
return ""
def process_code(
example: Dict[str, Any],
config: Config,
restart_on_fail: bool = False,
last_step: bool = False,
) -> Dict[str, Any]:
gen_text = example["gen_texts"]
num_python_blocks = len(re.findall(r"```python(.*?)```", gen_text, re.DOTALL))
if num_python_blocks == 0:
if restart_on_fail:
print("no code has ever been generated, RESTARTING")
# reset the text to the original
example["gen_texts"] = example["text"]
else:
print("no code has ever been generated, STOP")
example["should_prune"] = True
example["has_code"] = False
return example
if gen_text[-10:] != "```output\n" and ("answer is" in gen_text[-100:] or "\\boxed" in gen_text[-100:]):
num_output_blocks = len(re.findall(r"```output(.*?)```", gen_text, re.DOTALL))
if num_output_blocks == 0:
print("the model hallucinated the code answer")
example["should_prune"] = True
return example
if "boxed" in gen_text[-100:]:
try:
answer = normalize_final_answer(extract_boxed_answer(gen_text[-100:]))
except Exception:
answer = "-1"
else:
answer = normalize_final_answer(gen_text[-100:])
example["model_answers"] = answer
if not config.is_submission:
example["corrects"] = check_answer(example["ground_truth"], answer)
example["should_prune"] = True
print("Answer is: ", answer, example["ground_truth"], example["corrects"])
return example
if last_step:
# no point in continuing if we are at the last step
return example
if gen_text[-10:] != "```output\n":
# something else has gone wrong with the generation
print("warning: output block not found: ", gen_text[-40:])
if restart_on_fail:
example["gen_texts"] = example["text"]
else:
example["should_prune"] = True
return example
code_result, status = postprocess_completion(gen_text, return_status=True, last_code_block=True)
# add the code result for the next round of generation
TRUNCATION_LIMIT = 200
if len(code_result) > TRUNCATION_LIMIT:
code_result = code_result[:TRUNCATION_LIMIT] + " ... (output truncated)"
example["gen_texts"] = gen_text + f"{code_result}\n```"
return example
# load the vllm instance and set sampling parameters
# vllm = build_vllm(config)
def solve_problem(problem, temperature, progress=gr.Progress()):
problem = apply_template({"prompt": problem}, prompt=config.system_prompt)
print(f"Problem: {problem}")
sample = {
"problem": problem, # not used for the submission TODO Remove
"ground_truth": "unknown", # not used for the submission TODO Remove
"text": "### Solution:\n",
"gen_texts": "### Solution:\n", # used to store all the generated text
"should_prune": False,
"problem_index": -1, # not used for the submission TODO Remove
"model_answers": "-1",
"has_code": True,
"corrects": False, # not used for the submission TODO Remove
}
for step in progress.tqdm(
range(config.num_generations), desc="Generating candidates"
): # Depth of the tree (e.g. 6 steps = 5 code blocks)
step_reponse = sample["gen_texts"]
messages = [
{"role": "user", "content": sample["problem"]},
{"role": "assistant", "content": sample["gen_texts"]},
]
for reponse_message in generate(messages, temperature):
if reponse_message is not None:
step_reponse += reponse_message
yield step_reponse
sample["gen_texts"] = step_reponse
# TODO: Maybe it should just return the result of running the code
sample = process_code(
sample,
config=config,
restart_on_fail=config.restart_on_fail,
last_step=(step == (config.num_generations - 1)),
)
sample["gen_texts"] = sample["gen_texts"] + "\n"
run_code_reponse = sample["gen_texts"].replace(step_reponse, "")
for output_mseeage in run_code_reponse:
if output_mseeage is not None:
step_reponse += output_mseeage
yield step_reponse
if sample["should_prune"]:
break
yield sample["gen_texts"]
with gr.Blocks() as demo:
with gr.Row():
inp = gr.Textbox(placeholder="Problem", label="Problem", lines=5)
with gr.Accordion("Advanced Options", open=False):
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.8, step=0.1, label="Temperature")
with gr.Row():
out = gr.Markdown()
btn = gr.Button("Run")
btn.click(fn=solve_problem, inputs=[inp, temperature], outputs=out)
if __name__ == "__main__":
demo.queue(default_concurrency_limit=5).launch()
|