File size: 5,399 Bytes
71df811
 
05be1df
71df811
 
 
 
 
 
 
 
02a7301
825c8bf
 
 
 
 
ea68dfd
b2f1783
ea68dfd
 
 
 
b2f1783
869c0ac
 
 
825c8bf
 
869c0ac
 
 
825c8bf
aedf71e
869c0ac
b2f1783
 
 
 
 
8bc5536
 
 
869c0ac
 
dbe37b6
825c8bf
8aa7c27
 
 
 
7c89b23
825c8bf
1dea888
8aa7c27
825c8bf
869c0ac
825c8bf
 
65fa65c
7c89b23
825c8bf
65fa65c
8aa7c27
65fa65c
 
825c8bf
760dafb
825c8bf
 
7c89b23
825c8bf
8aa7c27
 
825c8bf
 
 
 
 
 
 
 
 
 
 
d73aa64
825c8bf
8aa7c27
 
825c8bf
 
3e8b723
825c8bf
633cada
 
 
825c8bf
 
d73aa64
 
3e8b723
d73aa64
1dea888
7c89b23
1dea888
8aa7c27
 
825c8bf
65fa65c
 
 
 
 
 
 
 
1dea888
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
title: Audio Diffusion
emoji: 🎵
colorFrom: pink
colorTo: blue
sdk: gradio
sdk_version: 3.1.4
app_file: app.py
pinned: false
license: gpl-3.0
---
# audio-diffusion [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/gradio_app.ipynb)

### Apply [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239) using the new Hugging Face [diffusers](https://github.com/huggingface/diffusers) package to synthesize music instead of images.

---

**UPDATES**: 

4/10/2022
It is now possible to mask parts of the input audio during generation which means you can stitch several samples together (think "out-painting").

27/9/2022
You can now generate an audio based on a previous one. You can use this to generate variations of the same audio or even to "remix" a track (via a sort of "style transfer"). You can find examples of how to do this in the [`test_model.ipynb`](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb) notebook.

---

![mel spectrogram](mel.png)

---

Audio can be represented as images by transforming to a [mel spectrogram](https://en.wikipedia.org/wiki/Mel-frequency_cepstrum), such as the one shown above. The class `Mel` in `mel.py` can convert a slice of audio into a mel spectrogram of `x_res` x `y_res` and vice versa. The higher the resolution, the less audio information will be lost. You can see how this works in the [`test_mel.ipynb`](https://github.com/teticio/audio-diffusion/blob/main/notebooks/test_mel.ipynb) notebook.

A DDPM model is trained on a set of mel spectrograms that have been generated from a directory of audio files. It is then used to synthesize similar mel spectrograms, which are then converted back into audio.

You can play around with some pretrained models on [Google Colab](https://colab.research.google.com/github/teticio/audio-diffusion/blob/master/notebooks/test_model.ipynb) or [Hugging Face spaces](https://huggingface.co/spaces/teticio/audio-diffusion). Check out some automatically generated loops [here](https://soundcloud.com/teticio2/sets/audio-diffusion-loops).


| Model | Dataset | Description |
|-------|---------|-------------|
| [teticio/audio-diffusion-256](https://huggingface.co/teticio/audio-diffusion-256) | [teticio/audio-diffusion-256](https://huggingface.co/datasets/teticio/audio-diffusion-256) | My "liked" Spotify playlist |
| [teticio/audio-diffusion-breaks-256](https://huggingface.co/teticio/audio-diffusion-breaks-256) | [teticio/audio-diffusion-breaks-256](https://huggingface.co/datasets/teticio/audio-diffusion-breaks-256) | Samples that have been used in music, sourced from [WhoSampled](https://whosampled.com) and [YouTube](https://youtube.com) |
| [teticio/audio-diffusion-instrumental-hiphop-256](https://huggingface.co/teticio/audio-diffusion-instrumental-hiphop-256) | [teticio/audio-diffusion-instrumental-hiphop-256](https://huggingface.co/datasets/teticio/audio-diffusion-instrumental-hiphop-256) | Instrumental Hip Hop music |

---

## Generate Mel spectrogram dataset from directory of audio files
#### Install
```bash
pip install .
```
#### Training can be run with Mel spectrograms of resolution 64x64 on a single commercial grade GPU (e.g. RTX 2080 Ti). The `hop_length` should be set to 1024 for better results.

```bash
python scripts/audio_to_images.py \
  --resolution 64 \
  --hop_length 1024 \
  --input_dir path-to-audio-files \
  --output_dir data-test
```
#### Generate dataset of 256x256 Mel spectrograms and push to hub (you will need to be authenticated with `huggingface-cli login`).

```bash
python scripts/audio_to_images.py \
  --resolution 256 \
  --input_dir path-to-audio-files \
  --output_dir data-256 \
  --push_to_hub teticio/audio-diffusion-256
```
## Train model
#### Run training on local machine.
```bash
accelerate launch --config_file config/accelerate_local.yaml \
  scripts/train_unconditional.py \
  --dataset_name data-64 \
  --resolution 64 \
  --hop_length 1024 \
  --output_dir ddpm-ema-audio-64 \
  --train_batch_size 16 \
  --num_epochs 100 \
  --gradient_accumulation_steps 1 \
  --learning_rate 1e-4 \
  --lr_warmup_steps 500 \
  --mixed_precision no
```
#### Run training on local machine with `batch_size` of 2 and `gradient_accumulation_steps` 8 to compensate, so that 256x256 resolution model fits on commercial grade GPU and push to hub.
```bash
accelerate launch --config_file config/accelerate_local.yaml \
  scripts/train_unconditional.py \
  --dataset_name teticio/audio-diffusion-256 \
  --resolution 256 \
  --output_dir latent-audio-diffusion-256 \
  --num_epochs 100 \
  --train_batch_size 2 \
  --eval_batch_size 2 \
  --gradient_accumulation_steps 8 \
  --learning_rate 1e-4 \
  --lr_warmup_steps 500 \
  --mixed_precision no \
  --push_to_hub True \
  --hub_model_id latent-audio-diffusion-256 \
  --hub_token $(cat $HOME/.huggingface/token)
```
#### Run training on SageMaker.
```bash
accelerate launch --config_file config/accelerate_sagemaker.yaml \
  scripts/train_unconditional.py \
  --dataset_name teticio/audio-diffusion-256 \
  --resolution 256 \
  --output_dir ddpm-ema-audio-256 \
  --train_batch_size 16 \
  --num_epochs 100 \
  --gradient_accumulation_steps 1 \
  --learning_rate 1e-4 \
  --lr_warmup_steps 500 \
  --mixed_precision no
```