Spaces:
Runtime error
Runtime error
import os | |
import argparse | |
import torch | |
import torchvision | |
import numpy as np | |
from PIL import Image | |
import pytorch_lightning as pl | |
from omegaconf import OmegaConf | |
from librosa.util import normalize | |
from ldm.util import instantiate_from_config | |
from pytorch_lightning.trainer import Trainer | |
from torch.utils.data import DataLoader, Dataset | |
from datasets import load_from_disk, load_dataset | |
from pytorch_lightning.callbacks import Callback, ModelCheckpoint | |
from pytorch_lightning.utilities.distributed import rank_zero_only | |
from audiodiffusion.mel import Mel | |
from audiodiffusion.utils import convert_ldm_to_hf_vae | |
class AudioDiffusion(Dataset): | |
def __init__(self, model_id, channels=3): | |
super().__init__() | |
self.channels = channels | |
if os.path.exists(model_id): | |
self.hf_dataset = load_from_disk(model_id)['train'] | |
else: | |
self.hf_dataset = load_dataset(model_id)['train'] | |
def __len__(self): | |
return len(self.hf_dataset) | |
def __getitem__(self, idx): | |
image = self.hf_dataset[idx]['image'] | |
if self.channels == 3: | |
image = image.convert('RGB') | |
image = np.frombuffer(image.tobytes(), dtype="uint8").reshape( | |
(image.height, image.width, self.channels)) | |
image = ((image / 255) * 2 - 1) | |
return {'image': image} | |
class AudioDiffusionDataModule(pl.LightningDataModule): | |
def __init__(self, model_id, batch_size, channels): | |
super().__init__() | |
self.batch_size = batch_size | |
self.dataset = AudioDiffusion(model_id=model_id, channels=channels) | |
self.num_workers = 1 | |
def train_dataloader(self): | |
return DataLoader(self.dataset, | |
batch_size=self.batch_size, | |
num_workers=self.num_workers) | |
class ImageLogger(Callback): | |
def __init__(self, every=1000, hop_length=512): | |
super().__init__() | |
self.every = every | |
self.hop_length = hop_length | |
def log_images_and_audios(self, pl_module, batch): | |
pl_module.eval() | |
with torch.no_grad(): | |
images = pl_module.log_images(batch, split='train') | |
pl_module.train() | |
image_shape = next(iter(images.values())).shape | |
channels = image_shape[1] | |
mel = Mel(x_res=image_shape[2], | |
y_res=image_shape[3], | |
hop_length=self.hop_length) | |
for k in images: | |
images[k] = images[k].detach().cpu() | |
images[k] = torch.clamp(images[k], -1., 1.) | |
images[k] = (images[k] + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w | |
grid = torchvision.utils.make_grid(images[k]) | |
tag = f"train/{k}" | |
pl_module.logger.experiment.add_image( | |
tag, grid, global_step=pl_module.global_step) | |
images[k] = (images[k].numpy() * | |
255).round().astype("uint8").transpose(0, 2, 3, 1) | |
for _, image in enumerate(images[k]): | |
audio = mel.image_to_audio( | |
Image.fromarray(image, mode='RGB').convert('L') | |
if channels == 3 else Image.fromarray(image[0])) | |
pl_module.logger.experiment.add_audio( | |
tag + f"/{_}", | |
normalize(audio), | |
global_step=pl_module.global_step, | |
sample_rate=mel.get_sample_rate()) | |
def on_train_batch_end(self, trainer, pl_module, outputs, batch, | |
batch_idx): | |
if (batch_idx + 1) % self.every != 0: | |
return | |
self.log_images_and_audios(pl_module, batch) | |
class HFModelCheckpoint(ModelCheckpoint): | |
def __init__(self, ldm_config, hf_checkpoint, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.ldm_config = ldm_config | |
self.hf_checkpoint = hf_checkpoint | |
def on_train_epoch_end(self, trainer, pl_module): | |
ldm_checkpoint = self._get_metric_interpolated_filepath_name( | |
{'epoch': trainer.current_epoch}, trainer) | |
super().on_train_epoch_end(trainer, pl_module) | |
convert_ldm_to_hf_vae(ldm_checkpoint, self.ldm_config, | |
self.hf_checkpoint) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Train VAE using ldm.") | |
parser.add_argument("-d", "--dataset_name", type=str, default=None) | |
parser.add_argument("-b", "--batch_size", type=int, default=1) | |
parser.add_argument("-c", | |
"--ldm_config_file", | |
type=str, | |
default="config/ldm_autoencoder_kl.yaml") | |
parser.add_argument("--ldm_checkpoint_dir", | |
type=str, | |
default="models/ldm-autoencoder-kl") | |
parser.add_argument("--hf_checkpoint_dir", | |
type=str, | |
default="models/autoencoder-kl") | |
parser.add_argument("-r", | |
"--resume_from_checkpoint", | |
type=str, | |
default=None) | |
parser.add_argument("-g", | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1) | |
parser.add_argument("--hop_length", type=int, default=512) | |
parser.add_argument("--save_images_batches", type=int, default=1000) | |
args = parser.parse_args() | |
config = OmegaConf.load(args.ldm_config_file) | |
model = instantiate_from_config(config.model) | |
model.learning_rate = config.model.base_learning_rate | |
data = AudioDiffusionDataModule( | |
model_id=args.dataset_name, | |
batch_size=args.batch_size, | |
channels=config.model.params.ddconfig.in_channels) | |
lightning_config = config.pop("lightning", OmegaConf.create()) | |
trainer_config = lightning_config.get("trainer", OmegaConf.create()) | |
trainer_config.accumulate_grad_batches = args.gradient_accumulation_steps | |
trainer_opt = argparse.Namespace(**trainer_config) | |
trainer = Trainer.from_argparse_args( | |
trainer_opt, | |
resume_from_checkpoint=args.resume_from_checkpoint, | |
callbacks=[ | |
ImageLogger(every=args.save_images_batches, | |
hop_length=args.hop_length), | |
HFModelCheckpoint(ldm_config=config, | |
hf_checkpoint=args.hf_checkpoint_dir, | |
dirpath=args.ldm_checkpoint_dir, | |
filename='{epoch:06}', | |
verbose=True, | |
save_last=True) | |
]) | |
trainer.fit(model, data) | |