audio-diffusion / scripts /train_vae.py
teticio's picture
move resolution specification to dataset generation
327bccf
raw
history blame
6.61 kB
import os
import argparse
import torch
import torchvision
import numpy as np
from PIL import Image
import pytorch_lightning as pl
from omegaconf import OmegaConf
from librosa.util import normalize
from ldm.util import instantiate_from_config
from pytorch_lightning.trainer import Trainer
from torch.utils.data import DataLoader, Dataset
from datasets import load_from_disk, load_dataset
from pytorch_lightning.callbacks import Callback, ModelCheckpoint
from pytorch_lightning.utilities.distributed import rank_zero_only
from audiodiffusion.mel import Mel
from audiodiffusion.utils import convert_ldm_to_hf_vae
class AudioDiffusion(Dataset):
def __init__(self, model_id, channels=3):
super().__init__()
self.channels = channels
if os.path.exists(model_id):
self.hf_dataset = load_from_disk(model_id)['train']
else:
self.hf_dataset = load_dataset(model_id)['train']
def __len__(self):
return len(self.hf_dataset)
def __getitem__(self, idx):
image = self.hf_dataset[idx]['image']
if self.channels == 3:
image = image.convert('RGB')
image = np.frombuffer(image.tobytes(), dtype="uint8").reshape(
(image.height, image.width, self.channels))
image = ((image / 255) * 2 - 1)
return {'image': image}
class AudioDiffusionDataModule(pl.LightningDataModule):
def __init__(self, model_id, batch_size, channels):
super().__init__()
self.batch_size = batch_size
self.dataset = AudioDiffusion(model_id=model_id, channels=channels)
self.num_workers = 1
def train_dataloader(self):
return DataLoader(self.dataset,
batch_size=self.batch_size,
num_workers=self.num_workers)
class ImageLogger(Callback):
def __init__(self, every=1000, hop_length=512):
super().__init__()
self.every = every
self.hop_length = hop_length
@rank_zero_only
def log_images_and_audios(self, pl_module, batch):
pl_module.eval()
with torch.no_grad():
images = pl_module.log_images(batch, split='train')
pl_module.train()
image_shape = next(iter(images.values())).shape
channels = image_shape[1]
mel = Mel(x_res=image_shape[2],
y_res=image_shape[3],
hop_length=self.hop_length)
for k in images:
images[k] = images[k].detach().cpu()
images[k] = torch.clamp(images[k], -1., 1.)
images[k] = (images[k] + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = torchvision.utils.make_grid(images[k])
tag = f"train/{k}"
pl_module.logger.experiment.add_image(
tag, grid, global_step=pl_module.global_step)
images[k] = (images[k].numpy() *
255).round().astype("uint8").transpose(0, 2, 3, 1)
for _, image in enumerate(images[k]):
audio = mel.image_to_audio(
Image.fromarray(image, mode='RGB').convert('L')
if channels == 3 else Image.fromarray(image[0]))
pl_module.logger.experiment.add_audio(
tag + f"/{_}",
normalize(audio),
global_step=pl_module.global_step,
sample_rate=mel.get_sample_rate())
def on_train_batch_end(self, trainer, pl_module, outputs, batch,
batch_idx):
if (batch_idx + 1) % self.every != 0:
return
self.log_images_and_audios(pl_module, batch)
class HFModelCheckpoint(ModelCheckpoint):
def __init__(self, ldm_config, hf_checkpoint, *args, **kwargs):
super().__init__(*args, **kwargs)
self.ldm_config = ldm_config
self.hf_checkpoint = hf_checkpoint
def on_train_epoch_end(self, trainer, pl_module):
ldm_checkpoint = self._get_metric_interpolated_filepath_name(
{'epoch': trainer.current_epoch}, trainer)
super().on_train_epoch_end(trainer, pl_module)
convert_ldm_to_hf_vae(ldm_checkpoint, self.ldm_config,
self.hf_checkpoint)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train VAE using ldm.")
parser.add_argument("-d", "--dataset_name", type=str, default=None)
parser.add_argument("-b", "--batch_size", type=int, default=1)
parser.add_argument("-c",
"--ldm_config_file",
type=str,
default="config/ldm_autoencoder_kl.yaml")
parser.add_argument("--ldm_checkpoint_dir",
type=str,
default="models/ldm-autoencoder-kl")
parser.add_argument("--hf_checkpoint_dir",
type=str,
default="models/autoencoder-kl")
parser.add_argument("-r",
"--resume_from_checkpoint",
type=str,
default=None)
parser.add_argument("-g",
"--gradient_accumulation_steps",
type=int,
default=1)
parser.add_argument("--hop_length", type=int, default=512)
parser.add_argument("--save_images_batches", type=int, default=1000)
args = parser.parse_args()
config = OmegaConf.load(args.ldm_config_file)
model = instantiate_from_config(config.model)
model.learning_rate = config.model.base_learning_rate
data = AudioDiffusionDataModule(
model_id=args.dataset_name,
batch_size=args.batch_size,
channels=config.model.params.ddconfig.in_channels)
lightning_config = config.pop("lightning", OmegaConf.create())
trainer_config = lightning_config.get("trainer", OmegaConf.create())
trainer_config.accumulate_grad_batches = args.gradient_accumulation_steps
trainer_opt = argparse.Namespace(**trainer_config)
trainer = Trainer.from_argparse_args(
trainer_opt,
resume_from_checkpoint=args.resume_from_checkpoint,
callbacks=[
ImageLogger(every=args.save_images_batches,
hop_length=args.hop_length),
HFModelCheckpoint(ldm_config=config,
hf_checkpoint=args.hf_checkpoint_dir,
dirpath=args.ldm_checkpoint_dir,
filename='{epoch:06}',
verbose=True,
save_last=True)
])
trainer.fit(model, data)