Spaces:
Sleeping
Sleeping
File size: 5,516 Bytes
95aad66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import torch
import numpy as np
import gradio as gr
from nltk import sent_tokenize
from transformers import RobertaTokenizer, RobertaForMaskedLM
cuda = torch.cuda.is_available()
tokenizer = RobertaTokenizer.from_pretrained("roberta-large")
model = RobertaForMaskedLM.from_pretrained("roberta-large")
if cuda:
model = model.cuda()
max_len = 20
top_k = 100
temperature = 1
burnin = 250
max_iter = 500
# adapted from https://github.com/nyu-dl/bert-gen
def generate_step(out,
gen_idx,
temperature=None,
top_k=0,
sample=False,
return_list=True):
""" Generate a word from from out[gen_idx]
args:
- out (torch.Tensor): tensor of logits of size batch_size x seq_len x vocab_size
- gen_idx (int): location for which to generate for
- top_k (int): if >0, only sample from the top k most probable words
- sample (Bool): if True, sample from full distribution. Overridden by top_k
"""
logits = out.logits[:, gen_idx]
if temperature is not None:
logits = logits / temperature
if top_k > 0:
kth_vals, kth_idx = logits.topk(top_k, dim=-1)
dist = torch.distributions.categorical.Categorical(logits=kth_vals)
idx = kth_idx.gather(dim=1,
index=dist.sample().unsqueeze(-1)).squeeze(-1)
elif sample:
dist = torch.distributions.categorical.Categorical(logits=logits)
idx = dist.sample() # removed superfluous squeeze(-1)
else:
idx = torch.argmax(logits, dim=-1)
return idx.tolist() if return_list else idx
# adapted from https://github.com/nyu-dl/bert-gen
def parallel_sequential_generation(seed_text,
seed_end_text,
max_len=max_len,
top_k=top_k,
temperature=temperature,
max_iter=max_iter,
burnin=burnin):
""" Generate for one random position at a timestep
args:
- burnin: during burn-in period, sample from full distribution; afterwards take argmax
"""
inp = tokenizer(seed_text + tokenizer.mask_token * max_len + seed_end_text,
return_tensors='pt')
masked_tokens = np.where(
inp['input_ids'][0].numpy() == tokenizer.mask_token_id)[0]
seed_len = masked_tokens[0]
if cuda:
inp = inp.to('cuda')
for ii in range(max_iter):
kk = np.random.randint(0, max_len)
out = model(**inp)
topk = top_k if (ii >= burnin) else 0
idxs = generate_step(out,
gen_idx=seed_len + kk,
top_k=topk,
temperature=temperature,
sample=(ii < burnin))
inp['input_ids'][0][seed_len + kk] = idxs[0]
tokens = inp['input_ids'].cpu().numpy()[0][masked_tokens]
tokens = tokens[(np.where((tokens != tokenizer.eos_token_id)
& (tokens != tokenizer.bos_token_id)))]
return tokenizer.decode(tokens)
def inbertolate(doc,
max_len=15,
top_k=0,
temperature=None,
max_iter=300,
burnin=200):
new_doc = ''
paras = doc.split('\n')
for para in paras:
para = sent_tokenize(para)
if para == '':
new_doc += '\n'
continue
para += ['']
for sentence in range(len(para) - 1):
new_doc += para[sentence] + ' '
new_doc += parallel_sequential_generation(para[sentence],
para[sentence + 1],
max_len=max_len,
top_k=top_k,
temperature=temperature,
burnin=burnin,
max_iter=max_iter) + ' '
new_doc += '\n'
return new_doc
if __name__ == '__main__':
block = gr.Blocks(css='.container')
with block:
gr.Markdown("<h1><center>inBERTolate</center></h1>")
gr.Markdown(
"<center>Hit your word count by using BERT to pad out your essays!</center>"
)
gr.Interface(
fn=inbertolate,
inputs=[
gr.Textbox(label="Text", lines=7),
gr.Slider(label="Maximum length to insert between sentences",
minimum=1,
maximum=40,
step=1,
value=max_len),
gr.Slider(label="Top k", minimum=0, maximum=200, value=top_k),
gr.Slider(label="Temperature",
minimum=0,
maximum=2,
value=temperature),
gr.Slider(label="Maximum iterations",
minimum=0,
maximum=1000,
value=max_iter),
gr.Slider(label="Burn-in",
minimum=0,
maximum=500,
value=burnin),
],
outputs=gr.Textbox(label="Expanded text", lines=24))
block.launch(server_name='0.0.0.0')
|