Spaces:
Sleeping
Sleeping
File size: 8,798 Bytes
fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e b212cb1 fba8f5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from math import ceil
from re import match
import seaborn as sns
from model import Model
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from model import Model
class Data:
"""Container for input and output data"""
# Initialise empty model as static class member for efficiency
model = Model()
def parse_seq(self, src: str):
"""Parse input sequence"""
self.seq = src.strip().upper().replace('\n', '')
if not all(x in self.model.alphabet for x in self.seq):
raise RuntimeError("Unrecognised characters in sequence")
def parse_sub(self, trg: str):
"""Parse input substitutions"""
self.mode = None
self.sub = list()
self.trg = trg.strip().upper()
self.resi = list()
# Identify running mode
if len(self.trg.split()) == 1 and len(self.trg.split()[0]) == len(self.seq) and all(match(r'\w+', x) for x in self.trg):
# If single string of same length as sequence, seq vs seq mode
self.mode = 'MUT'
for resi, (src, trg) in enumerate(zip(self.seq, self.trg), 1):
if src != trg:
self.sub.append(f"{src}{resi}{trg}")
self.resi.append(resi)
else:
self.trg = self.trg.split()
if all(match(r'\d+', x) for x in self.trg):
# If all strings are numbers, deep mutational scanning mode
self.mode = 'DMS'
for resi in map(int, self.trg):
src = self.seq[resi-1]
for trg in "ACDEFGHIKLMNPQRSTVWY".replace(src, ''):
self.sub.append(f"{src}{resi}{trg}")
self.resi.append(resi)
elif all(match(r'[A-Z]\d+[A-Z]', x) for x in self.trg):
# If all strings are of the form X#Y, single substitution mode
self.mode = 'MUT'
self.sub = self.trg
self.resi = [int(x[1:-1]) for x in self.trg]
for s, *resi, _ in self.trg:
if self.seq[int(''.join(resi))-1] != s:
raise RuntimeError(f"Unrecognised input substitution {self.seq[int(''.join(resi))]}{int(''.join(resi))} /= {s}{int(''.join(resi))}")
else:
self.mode = 'TMS'
for resi, src in enumerate(self.seq, 1):
for trg in "ACDEFGHIKLMNPQRSTVWY".replace(src, ''):
self.sub.append(f"{src}{resi}{trg}")
self.resi.append(resi)
self.sub = pd.DataFrame(self.sub, columns=['0'])
def __init__(self, src:str, trg:str, model_name:str='facebook/esm2_t33_650M_UR50D', scoring_strategy:str='masked-marginals', out_file=None):
"initialise data"
# if model has changed, load new model
if self.model.model_name != model_name:
self.model_name = model_name
self.model = Model(model_name)
self.parse_seq(src)
self.offset = 0
self.parse_sub(trg)
self.scoring_strategy = scoring_strategy
self.token_probs = None
self.out = pd.DataFrame(self.sub, columns=['0', self.model_name])
self.out_str = None
self.out_buffer = out_file.name if 'name' in dir(out_file) else out_file
def parse_output(self) -> None:
"format output data for visualisation"
if self.mode == 'TMS':
self.process_tms_mode()
else:
if self.mode == 'DMS':
self.sort_by_residue_and_score()
elif self.mode == 'MUT':
self.sort_by_score()
else:
raise RuntimeError(f"Unrecognised mode {self.mode}")
if self.out_buffer:
self.out.round(2).to_csv(self.out_buffer, index=False, header=False)
self.out_str = (self.out.style
.format(lambda x: f'{x:.2f}' if isinstance(x, float) else x)
.hide(axis=0)
.hide(axis=1)
.background_gradient(cmap="RdYlGn", vmax=8, vmin=-8)
.to_html(justify='center'))
def sort_by_score(self):
self.out = self.out.sort_values(self.model_name, ascending=False)
def sort_by_residue_and_score(self):
self.out = (self.out.assign(resi=self.out['0'].str.extract(r'(\d+)', expand=False).astype(int))
.sort_values(['resi', self.model_name], ascending=[True,False])
.groupby(['resi'])
.head(19)
.drop(['resi'], axis=1))
self.out = pd.concat([self.out.iloc[19*x:19*(x+1)].reset_index(drop=True) for x in range(self.out.shape[0]//19)]
, axis=1).set_axis(range(self.out.shape[0]//19*2), axis='columns')
def process_tms_mode(self):
self.out = self.assign_resi_and_group()
self.out = self.concat_and_set_axis()
self.out /= self.out.abs().max().max()
divs = self.calculate_divs()
ncols = min(divs, key=lambda x: abs(x-60))
nrows = ceil(self.out.shape[1]/ncols)
ncols = self.adjust_ncols(ncols, nrows)
self.plot_heatmap(ncols, nrows)
def assign_resi_and_group(self):
return (self.out.assign(resi=self.out['0'].str.extract(r'(\d+)', expand=False).astype(int))
.groupby(['resi'])
.head(19))
def concat_and_set_axis(self):
return (pd.concat([(self.out.iloc[19*x:19*(x+1)]
.pipe(self.create_dataframe)
.sort_values(['0'], ascending=[True])
.drop(['resi', '0'], axis=1)
.set_axis(['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L',
'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'])
.astype(float)
) for x in range(self.out.shape[0]//19)]
, axis=1)
.set_axis([f'{a}{i}' for i, a in enumerate(self.seq, 1)], axis='columns'))
def create_dataframe(self, df):
return pd.concat([pd.Series([df.iloc[0, 0][:-1]+df.iloc[0, 0][0], 0, 0], index=df.columns).to_frame().T, df], axis=0, ignore_index=True)
def calculate_divs(self):
return [x for x in range(1, self.out.shape[1]+1) if self.out.shape[1] % x == 0 and 30 <= x and x <= 60] or [60]
def adjust_ncols(self, ncols, nrows):
while self.out.shape[1]/ncols < nrows and ncols > 45 and ncols*nrows >= self.out.shape[1]:
ncols -= 1
return ncols + 1
def plot_heatmap(self, ncols, nrows):
if nrows < 2:
self.plot_single_heatmap()
else:
self.plot_multiple_heatmaps(ncols, nrows)
if self.out_buffer:
plt.savefig(self.out_buffer, format='svg')
with open(self.out_buffer, 'r', encoding='utf-8') as f:
self.out_str = f.read()
def plot_single_heatmap(self):
fig = plt.figure(figsize=(12, 6))
sns.heatmap(self.out
, cmap='RdBu'
, cbar=False
, square=True
, xticklabels=1
, yticklabels=1
, center=0
, annot=self.out.map(lambda x: ' ' if x != 0 else '·')
, fmt='s'
, annot_kws={'size': 'xx-large'})
fig.tight_layout()
def plot_multiple_heatmaps(self, ncols, nrows):
fig, ax = plt.subplots(nrows=nrows, figsize=(12, 6*nrows))
for i in range(nrows):
tmp = self.out.iloc[:,i*ncols:(i+1)*ncols]
label = tmp.map(lambda x: ' ' if x != 0 else '·')
sns.heatmap(tmp
, ax=ax[i]
, cmap='RdBu'
, cbar=False
, square=True
, xticklabels=1
, yticklabels=1
, center=0
, annot=label
, fmt='s'
, annot_kws={'size': 'xx-large'})
ax[i].set_yticklabels(ax[i].get_yticklabels(), rotation=0)
ax[i].set_xticklabels(ax[i].get_xticklabels(), rotation=90)
fig.tight_layout()
def calculate(self):
"run model and parse output"
self.model.run_model(self)
self.parse_output()
return self
def __str__(self):
"return output data in DataFrame format"
return str(self.out)
def __repr__(self):
"return output data in html format"
return self.out_str
|