Spaces:
Sleeping
Sleeping
MassimoGregorioTotaro
commited on
Commit
•
634752b
1
Parent(s):
cd5b5ac
add application file
Browse files
app.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import HfApi, ModelFilter
|
2 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
from tqdm import tqdm
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
import warnings
|
9 |
+
warnings.filterwarnings('ignore')
|
10 |
+
|
11 |
+
MODEL, MODEL_NAME, BATCH_CONVERTER, ALPHABET = None, None, None, None
|
12 |
+
OFFSET = 1
|
13 |
+
MODELS = [m.modelId for m in HfApi().list_models(filter=ModelFilter(author="facebook", model_name="esm", task="fill-mask"), sort="lastModified", direction=-1)]
|
14 |
+
SCORING = ["masked-marginals (more accurate)", "wt-marginals (faster)"]
|
15 |
+
|
16 |
+
def label_row(row, sequence, token_probs):
|
17 |
+
wt, idx, mt = row[0], int(row[1:-1]) - OFFSET, row[-1]
|
18 |
+
assert sequence[idx] == wt, "The listed wildtype does not match the provided sequence"
|
19 |
+
|
20 |
+
wt_encoded, mt_encoded = ALPHABET[wt], ALPHABET[mt]
|
21 |
+
|
22 |
+
score = token_probs[0, 1 + idx, mt_encoded] - token_probs[0, 1 + idx, wt_encoded]
|
23 |
+
return score.item()
|
24 |
+
|
25 |
+
def initialise_model(model_name):
|
26 |
+
global MODEL, MODEL_NAME, BATCH_CONVERTER, ALPHABET
|
27 |
+
MODEL_NAME = model_name
|
28 |
+
MODEL = AutoModelForMaskedLM.from_pretrained(model_name)
|
29 |
+
BATCH_CONVERTER = AutoTokenizer.from_pretrained(model_name)
|
30 |
+
ALPHABET = BATCH_CONVERTER.get_vocab()
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
MODEL = MODEL.cuda()
|
33 |
+
|
34 |
+
def parse_input(seq, sub):
|
35 |
+
assert seq.isalpha(), "Sequence must be alphabetic"
|
36 |
+
substitutions, mode = list(), None
|
37 |
+
|
38 |
+
if len(sub.split()) == 1 and len(sub.split()[0]) == len(seq):
|
39 |
+
mode = 'seq vs seq'
|
40 |
+
for resi,(src,trg) in enumerate(zip(seq,sub), OFFSET):
|
41 |
+
if src != trg:
|
42 |
+
substitutions.append(f"{src}{resi}{trg}")
|
43 |
+
elif len(targets := sub.split()) > 1:
|
44 |
+
if all(re.match(r'\d+', x) for x in targets):
|
45 |
+
mode = 'deep mutational scan'
|
46 |
+
for resi in map(int, sub.split()):
|
47 |
+
src = seq[resi-OFFSET]
|
48 |
+
for trg in "ACDEFGHIKLMNPQRSTVWY".replace(src,''):
|
49 |
+
substitutions.append(f"{src}{resi}{trg}")
|
50 |
+
elif all(re.match(r'[A-Z]\d+[A-Z]', x) for x in targets):
|
51 |
+
mode = 'aa substitutions'
|
52 |
+
substitutions = targets
|
53 |
+
|
54 |
+
if not mode:
|
55 |
+
raise RuntimeError("Unrecognised running mode")
|
56 |
+
|
57 |
+
return mode, pd.DataFrame(substitutions, columns=['0'])
|
58 |
+
|
59 |
+
def run_model(sequence, substitutions, batch_tokens, scoring_strategy):
|
60 |
+
if scoring_strategy.startswith("wt-marginals"):
|
61 |
+
with torch.no_grad():
|
62 |
+
token_probs = torch.log_softmax(MODEL(batch_tokens)["logits"], dim=-1)
|
63 |
+
substitutions[MODEL_NAME] = substitutions.apply(
|
64 |
+
lambda row: label_row(
|
65 |
+
row['0'],
|
66 |
+
sequence,
|
67 |
+
token_probs,
|
68 |
+
),
|
69 |
+
axis=1,
|
70 |
+
)
|
71 |
+
elif scoring_strategy.startswith("masked-marginals"):
|
72 |
+
all_token_probs = []
|
73 |
+
for i in tqdm(range(batch_tokens.size()[1])):
|
74 |
+
batch_tokens_masked = batch_tokens.clone()
|
75 |
+
batch_tokens_masked[0, i] = ALPHABET['<mask>']
|
76 |
+
with torch.no_grad():
|
77 |
+
token_probs = torch.log_softmax(
|
78 |
+
MODEL(batch_tokens_masked)["logits"], dim=-1
|
79 |
+
)
|
80 |
+
all_token_probs.append(token_probs[:, i])
|
81 |
+
token_probs = torch.cat(all_token_probs, dim=0).unsqueeze(0)
|
82 |
+
substitutions[MODEL_NAME] = substitutions.apply(
|
83 |
+
lambda row: label_row(
|
84 |
+
row['0'],
|
85 |
+
sequence,
|
86 |
+
token_probs,
|
87 |
+
),
|
88 |
+
axis=1,
|
89 |
+
)
|
90 |
+
|
91 |
+
return substitutions
|
92 |
+
|
93 |
+
def parse_output(output, mode):
|
94 |
+
if mode == 'aa substitutions':
|
95 |
+
output = output.sort_values(MODEL_NAME, ascending=False)
|
96 |
+
elif mode == 'deep mutational scan':
|
97 |
+
output = pd.concat([(output.assign(resi=output['0'].str.extract(r'(\d+)', expand=False).astype(int))
|
98 |
+
.sort_values(['resi', MODEL_NAME], ascending=[True,False])
|
99 |
+
.groupby(['resi'])
|
100 |
+
.head(19)
|
101 |
+
.drop(['resi'], axis=1)).iloc[19*x:19*(x+1)].reset_index(drop=True) for x in range(output.shape[0]//19)]
|
102 |
+
, axis=1).set_axis(range(output.shape[0]//19*2), axis='columns')
|
103 |
+
|
104 |
+
return output.style.format(lambda x: f'{x:.2f}' if isinstance(x, float) else x).hide_index().hide_columns().background_gradient(cmap="RdYlGn", vmax=8, vmin=-8).to_html()
|
105 |
+
|
106 |
+
|
107 |
+
# mode = 'deep mutational scan' #@param ['seq vs seq', 'deep mutational scan', 'aa substitutions']
|
108 |
+
# sequence = "MVEQYLLEAIVRDARDGITISDCSRPDNPLVFVNDAFTRMTGYDAEEVIGKNCRFLQRGDINLSAVHTIKIAMLTHEPCLVTLKNYRKDGTIFWNELSLTPIINKNGLITHYLGIQKDVSAQVILNQTLHEENHLLKSNKEMLEYLVNIDALTGLHNRRFLEDQLVIQWKLASRHINTITIFMIDIDYFKAFNDTYGHTAGDEALRTIAKTLNNCFMRGSDFVARYGGEEFTILAIGMTELQAHEYSTKLVQKIENLNIHHKGSPLGHLTISLGYSQANPQYHNDQNLVIEQADRALYSAKVEGKNRAVAYREQ" #@param {type:"string"}
|
109 |
+
# target = "61 214 19 30 122 140" #@param {type:"string"}
|
110 |
+
# substitutions = list()
|
111 |
+
# scoring_strategy = "masked-marginals"
|
112 |
+
|
113 |
+
# if mode == 'seq vs seq':
|
114 |
+
# for resi,(seq,trg) in enumerate(zip(sequence,target), OFFSET):
|
115 |
+
# if seq != trg:
|
116 |
+
# substitutions.append(f"{seq}{resi}{trg}")
|
117 |
+
# elif mode == 'deep mutational scan':
|
118 |
+
# for resi in map(int, target.split()):
|
119 |
+
# seq = sequence[resi-OFFSET]
|
120 |
+
# for trg in "ACDEFGHIKLMNPQRSTVWY".replace(seq,''):
|
121 |
+
# substitutions.append(f"{seq}{resi}{trg}")
|
122 |
+
# elif mode == 'aa substitutions':
|
123 |
+
# substitutions = target.split()
|
124 |
+
# else:
|
125 |
+
# raise RuntimeError("Unrecognised running mode")
|
126 |
+
|
127 |
+
# df = pd.DataFrame(substitutions, columns=['0'])
|
128 |
+
# mutation_col = df.columns[0]
|
129 |
+
|
130 |
+
# batch_tokens = batch_converter(sequence, return_tensors='pt')['input_ids']
|
131 |
+
|
132 |
+
# if scoring_strategy == "wt-marginals":
|
133 |
+
# with torch.no_grad():
|
134 |
+
# token_probs = torch.log_softmax(model(batch_tokens)["logits"], dim=-1)
|
135 |
+
# df[model_name] = df.apply(
|
136 |
+
# lambda row: label_row(
|
137 |
+
# row[mutation_col],
|
138 |
+
# sequence,
|
139 |
+
# token_probs,
|
140 |
+
# alphabet,
|
141 |
+
# OFFSET,
|
142 |
+
# ),
|
143 |
+
# axis=1,
|
144 |
+
# )
|
145 |
+
# elif scoring_strategy == "masked-marginals":
|
146 |
+
# all_token_probs = []
|
147 |
+
# for i in tqdm(range(batch_tokens.size()[1])):
|
148 |
+
# batch_tokens_masked = batch_tokens.clone()
|
149 |
+
# batch_tokens_masked[0, i] = alphabet['<mask>']
|
150 |
+
# with torch.no_grad():
|
151 |
+
# token_probs = torch.log_softmax(
|
152 |
+
# model(batch_tokens_masked)["logits"], dim=-1
|
153 |
+
# )
|
154 |
+
# all_token_probs.append(token_probs[:, i]) # vocab size
|
155 |
+
# token_probs = torch.cat(all_token_probs, dim=0).unsqueeze(0)
|
156 |
+
# df[model_name] = df.apply(
|
157 |
+
# lambda row: label_row(
|
158 |
+
# row[mutation_col],
|
159 |
+
# sequence,
|
160 |
+
# token_probs,
|
161 |
+
# alphabet,
|
162 |
+
# OFFSET,
|
163 |
+
# ),
|
164 |
+
# axis=1,
|
165 |
+
# )
|
166 |
+
|
167 |
+
# if mode == 'aa substitutions':
|
168 |
+
# df = df.sort_values(model_name, ascending=False)
|
169 |
+
# elif mode == 'deep mutational scan':
|
170 |
+
# df = pd.concat([(df.assign(resi=df['0'].str.extract(f'(\d+)', expand=False).astype(int))
|
171 |
+
# .sort_values(['resi', model_name], ascending=[True,False])
|
172 |
+
# .groupby(['resi'])
|
173 |
+
# .head(19)
|
174 |
+
# .drop(['resi'], axis=1)).iloc[19*x:19*(x+1)].reset_index(drop=True) for x in range(df.shape[0]//19)]
|
175 |
+
# , axis=1).set_axis(range(df.shape[0]//19*2), axis='columns')
|
176 |
+
|
177 |
+
# df.style.hide_index().hide_columns().background_gradient(cmap="RdYlGn", vmax=8, vmin=-8)
|
178 |
+
|
179 |
+
def app(*argv):
|
180 |
+
seq, trg, model_name, scoring_strategy, *_ = argv
|
181 |
+
|
182 |
+
mode, substitutions = parse_input(seq, trg)
|
183 |
+
|
184 |
+
if model_name != MODEL_NAME:
|
185 |
+
initialise_model(model_name)
|
186 |
+
|
187 |
+
batch_tokens = BATCH_CONVERTER(seq, return_tensors='pt')['input_ids']
|
188 |
+
|
189 |
+
df = run_model(seq, substitutions, batch_tokens, scoring_strategy)
|
190 |
+
|
191 |
+
return parse_output(df, mode)
|
192 |
+
|
193 |
+
# demo = gr.Interface(
|
194 |
+
# theme=gr.themes.Base(),
|
195 |
+
# title="Protein Sequence Mutagenesis",
|
196 |
+
# description="Predict the effect of mutations on protein stability",
|
197 |
+
# fn=app,
|
198 |
+
# inputs=[gr.Textbox(lines=2, label="Sequence", placeholder="Sequence here...", required=True, value='MVEQYLLEAIVRDARDGITISDCSRPDNPLVFVNDAFTRMTGYDAEEVIGKNCRFLQRGDINLSAVHTIKIAMLTHEPCLVTLKNYRKDGTIFWNELSLTPIINKNGLITHYLGIQKDVSAQVILNQTLHEENHLLKSNKEMLEYLVNIDALTGLHNRRFLEDQLVIQWKLASRHINTITIFMIDIDYFKAFNDTYGHTAGDEALRTIAKTLNNCFMRGSDFVARYGGEEFTILAIGMTELQAHEYSTKLVQKIENLNIHHKGSPLGHLTISLGYSQANPQYHNDQNLVIEQADRALYSAKVEGKNRAVAYREQ'),
|
199 |
+
# gr.Textbox(lines=2, label="Substitutions", placeholder="Substitutions here...", required=True, value="61 214 19 30 122 140"),
|
200 |
+
# gr.Dropdown(MODELS, label="Model", value=MODELS[1]),
|
201 |
+
# gr.Dropdown(["masked-marginals (more accurate)", "wt-marginals (faster)"], label="Scoring strategy", value="wt-marginals (faster)"),
|
202 |
+
# ],
|
203 |
+
# outputs=gr.HTML(formatter="html", label="Output"),
|
204 |
+
# )
|
205 |
+
|
206 |
+
with gr.Blocks() as demo:
|
207 |
+
gr.Markdown("""Protein Sequence Mutagenesis""", name="title")
|
208 |
+
gr.Markdown("""Predict the effect of mutations on protein stability""", name="description")
|
209 |
+
seq = gr.Textbox(lines=2, label="Sequence", placeholder="Sequence here...", required=True, value='MVEQYLLEAIVRDARDGITISDCSRPDNPLVFVNDAFTRMTGYDAEEVIGKNCRFLQRGDINLSAVHTIKIAMLTHEPCLVTLKNYRKDGTIFWNELSLTPIINKNGLITHYLGIQKDVSAQVILNQTLHEENHLLKSNKEMLEYLVNIDALTGLHNRRFLEDQLVIQWKLASRHINTITIFMIDIDYFKAFNDTYGHTAGDEALRTIAKTLNNCFMRGSDFVARYGGEEFTILAIGMTELQAHEYSTKLVQKIENLNIHHKGSPLGHLTISLGYSQANPQYHNDQNLVIEQADRALYSAKVEGKNRAVAYREQ')
|
210 |
+
trg = gr.Textbox(lines=1, label="Substitutions", placeholder="Substitutions here...", required=True, value="61 214 19 30 122 140")
|
211 |
+
model_name = gr.Dropdown(MODELS, label="Model", value=MODELS[1])
|
212 |
+
scoring_strategy = gr.Dropdown(SCORING, label="Scoring strategy", value=SCORING[1])
|
213 |
+
btn = gr.Button(label="Submit", type="submit")
|
214 |
+
btn.click(fn=app, inputs=[seq, trg, model_name, scoring_strategy], outputs=[gr.HTML()])
|
215 |
+
|
216 |
+
if __name__ == '__main__':
|
217 |
+
demo.launch()
|
218 |
+
# demo.launch(share=True, server_name="0.0.0.0", server_port=7878)
|