diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..858018e750da7be7b271bb7307e68d159ed67ef6
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2023 Shivam Mehta
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/MANIFEST.in b/MANIFEST.in
new file mode 100644
index 0000000000000000000000000000000000000000..c013140cdfb9de19c4d4e73c73a44e33f33fa871
--- /dev/null
+++ b/MANIFEST.in
@@ -0,0 +1,14 @@
+include README.md
+include LICENSE.txt
+include requirements.*.txt
+include *.cff
+include requirements.txt
+include matcha/VERSION
+recursive-include matcha *.json
+recursive-include matcha *.html
+recursive-include matcha *.png
+recursive-include matcha *.md
+recursive-include matcha *.py
+recursive-include matcha *.pyx
+recursive-exclude tests *
+prune tests*
diff --git a/Makefile b/Makefile
new file mode 100644
index 0000000000000000000000000000000000000000..4b523dd17b13a19617c9cc9d9dad7f7d8d4c24a0
--- /dev/null
+++ b/Makefile
@@ -0,0 +1,42 @@
+
+help: ## Show help
+ @grep -E '^[.a-zA-Z_-]+:.*?## .*$$' $(MAKEFILE_LIST) | awk 'BEGIN {FS = ":.*?## "}; {printf "\033[36m%-30s\033[0m %s\n", $$1, $$2}'
+
+clean: ## Clean autogenerated files
+ rm -rf dist
+ find . -type f -name "*.DS_Store" -ls -delete
+ find . | grep -E "(__pycache__|\.pyc|\.pyo)" | xargs rm -rf
+ find . | grep -E ".pytest_cache" | xargs rm -rf
+ find . | grep -E ".ipynb_checkpoints" | xargs rm -rf
+ rm -f .coverage
+
+clean-logs: ## Clean logs
+ rm -rf logs/**
+
+create-package: ## Create wheel and tar gz
+ rm -rf dist/
+ python setup.py bdist_wheel --plat-name=manylinux1_x86_64
+ python setup.py sdist
+ python -m twine upload dist/* --verbose --skip-existing
+
+format: ## Run pre-commit hooks
+ pre-commit run -a
+
+sync: ## Merge changes from main branch to your current branch
+ git pull
+ git pull origin main
+
+test: ## Run not slow tests
+ pytest -k "not slow"
+
+test-full: ## Run all tests
+ pytest
+
+train-ljspeech: ## Train the model
+ python matcha/train.py experiment=ljspeech
+
+train-ljspeech-min: ## Train the model with minimum memory
+ python matcha/train.py experiment=ljspeech_min_memory
+
+start_app: ## Start the app
+ python matcha/app.py
diff --git a/README.md:Zone.Identifier b/README.md:Zone.Identifier
new file mode 100644
index 0000000000000000000000000000000000000000..cfb6db5ae8db553aced535d78635eb42932097b0
--- /dev/null
+++ b/README.md:Zone.Identifier
@@ -0,0 +1,4 @@
+[ZoneTransfer]
+ZoneId=3
+ReferrerUrl=https://huggingface.co/spaces/the-cramer-project/AkylAI_TTS_small/tree/main
+HostUrl=https://huggingface.co/spaces/the-cramer-project/AkylAI_TTS_small/resolve/main/README.md?download=true
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..52cd1e923c03660b036c6cdf7057d9e758f45932
--- /dev/null
+++ b/app.py
@@ -0,0 +1,174 @@
+from pathlib import Path
+import argparse
+import soundfile as sf
+import torch
+import io
+import argparse
+from matcha.hifigan.config import v1
+from matcha.hifigan.denoiser import Denoiser
+from matcha.hifigan.env import AttrDict
+from matcha.hifigan.models import Generator as HiFiGAN
+from matcha.models.matcha_tts import MatchaTTS
+from matcha.text import sequence_to_text, text_to_sequence
+from matcha.utils.utils import intersperse
+import gradio as gr
+import requests
+
+def download_file(url, save_path):
+ response = requests.get(url)
+ with open(save_path, 'wb') as file:
+ file.write(response.content)
+
+url_checkpoint = 'https://github.com/simonlobgromov/AkylAI_Matcha_Checkpoint/releases/download/Matcha-TTS/checkpoint_epoch.499.ckpt'
+save_checkpoint_path = './checkpoints/checkpoint.ckpt'
+url_generator = 'https://github.com/simonlobgromov/AkylAI_Matcha_HiFiGan/releases/download/Generator/generator_v1'
+save_generator_path = './checkpoints/generator'
+
+download_file(url_checkpoint, save_checkpoint_path)
+download_file(url_generator, save_generator_path)
+
+def load_matcha( checkpoint_path, device):
+ model = MatchaTTS.load_from_checkpoint(checkpoint_path, map_location=device)
+ _ = model.eval()
+ return model
+
+def load_hifigan(checkpoint_path, device):
+ h = AttrDict(v1)
+ hifigan = HiFiGAN(h).to(device)
+ hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"])
+ _ = hifigan.eval()
+ hifigan.remove_weight_norm()
+ return hifigan
+
+def load_vocoder(checkpoint_path, device):
+ vocoder = None
+ vocoder = load_hifigan(checkpoint_path, device)
+ denoiser = Denoiser(vocoder, mode="zeros")
+ return vocoder, denoiser
+
+def process_text(i: int, text: str, device: torch.device):
+ print(f"[{i}] - Input text: {text}")
+ x = torch.tensor(
+ intersperse(text_to_sequence(text, ["kyrgyz_cleaners"]), 0),
+ dtype=torch.long,
+ device=device,
+ )[None]
+ x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
+ x_phones = sequence_to_text(x.squeeze(0).tolist())
+ print(f"[{i}] - Phonetised text: {x_phones[1::2]}")
+ return {"x_orig": text, "x": x, "x_lengths": x_lengths, "x_phones": x_phones}
+
+def to_waveform(mel, vocoder, denoiser=None):
+ audio = vocoder(mel).clamp(-1, 1)
+ if denoiser is not None:
+ audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
+ return audio.cpu().squeeze()
+
+@torch.inference_mode()
+def process_text_gradio(text):
+ output = process_text(1, text, device)
+ return output["x_phones"][1::2], output["x"], output["x_lengths"]
+
+@torch.inference_mode()
+def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk=-1):
+ spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
+ output = model.synthesise(
+ text,
+ text_length,
+ n_timesteps=n_timesteps,
+ temperature=temperature,
+ spks=spk,
+ length_scale=length_scale,
+ )
+ output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
+ return output["waveform"].numpy()
+
+def get_inference(text, n_timesteps=20, mel_temp = 0.667, length_scale=0.8, spk=-1):
+ phones, text, text_lengths = process_text_gradio(text)
+ print(type(synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)))
+ return synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
+
+
+device = torch.device("cpu")
+model_path = './checkpoints/checkpoint.ckpt'
+vocoder_path = './checkpoints/generator'
+model = load_matcha(model_path, device)
+vocoder, denoiser = load_vocoder(vocoder_path, device)
+
+def gen_tts(text, speaking_rate):
+ return 22050, get_inference(text = text, length_scale = speaking_rate)
+
+default_text = "Баарыңарга салам, менин атым Акылай."
+
+css = """
+ #share-btn-container {
+ display: flex;
+ padding-left: 0.5rem !important;
+ padding-right: 0.5rem !important;
+ background-color: #000000;
+ justify-content: center;
+ align-items: center;
+ border-radius: 9999px !important;
+ width: 13rem;
+ margin-top: 10px;
+ margin-left: auto;
+ flex: unset !important;
+ }
+ #share-btn {
+ all: initial;
+ color: #ffffff;
+ font-weight: 600;
+ cursor: pointer;
+ font-family: 'IBM Plex Sans', sans-serif;
+ margin-left: 0.5rem !important;
+ padding-top: 0.25rem !important;
+ padding-bottom: 0.25rem !important;
+ right:0;
+ }
+ #share-btn * {
+ all: unset !important;
+ }
+ #share-btn-container div:nth-child(-n+2){
+ width: auto !important;
+ min-height: 0px !important;
+ }
+ #share-btn-container .wrap {
+ display: none !important;
+ }
+"""
+with gr.Blocks(css=css) as block:
+ gr.HTML(
+ """
+
+ """
+ )
+ with gr.Row():
+ image_path = "./photo_2024-04-07_15-59-52.png"
+ gr.Image(image_path, label=None, width=660, height=315, show_label=False)
+ with gr.Row():
+ with gr.Column():
+ input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
+ speaking_rate = gr.Slider(label='Speaking rate', minimum=0.5, maximum=1, step=0.05, value=0.8, interactive=True, show_label=True, elem_id="speaking_rate")
+
+
+ run_button = gr.Button("Generate Audio", variant="primary")
+ with gr.Column():
+ audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
+
+ inputs = [input_text, speaking_rate]
+ outputs = [audio_out]
+ run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
+
+
+block.queue()
+block.launch(share=True)
diff --git a/checkpoints/info.txt b/checkpoints/info.txt
new file mode 100644
index 0000000000000000000000000000000000000000..103c4df94caa6aceba547da00799f9bec5f6f407
--- /dev/null
+++ b/checkpoints/info.txt
@@ -0,0 +1 @@
+Забудь дорогу всяк сюда входящий!
diff --git a/configs/__init__.py b/configs/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..56bf7f4aa4906bc0f997132708cc0826c198e4aa
--- /dev/null
+++ b/configs/__init__.py
@@ -0,0 +1 @@
+# this file is needed here to include configs when building project as a package
diff --git a/configs/callbacks/default.yaml b/configs/callbacks/default.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ebaa3ed31a7f626bc62f90184dc4b25b631e52a9
--- /dev/null
+++ b/configs/callbacks/default.yaml
@@ -0,0 +1,5 @@
+defaults:
+ - model_checkpoint.yaml
+ - model_summary.yaml
+ - rich_progress_bar.yaml
+ - _self_
diff --git a/configs/callbacks/model_checkpoint.yaml b/configs/callbacks/model_checkpoint.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..5de653632376777bc112d708a6f238aa3696d0b4
--- /dev/null
+++ b/configs/callbacks/model_checkpoint.yaml
@@ -0,0 +1,17 @@
+# https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.ModelCheckpoint.html
+
+model_checkpoint:
+ _target_: lightning.pytorch.callbacks.ModelCheckpoint
+ dirpath: ${paths.output_dir}/checkpoints # directory to save the model file
+ filename: checkpoint_{epoch:03d} # checkpoint filename
+ monitor: epoch # name of the logged metric which determines when model is improving
+ verbose: False # verbosity mode
+ save_last: true # additionally always save an exact copy of the last checkpoint to a file last.ckpt
+ save_top_k: 5 # save k best models (determined by above metric)
+ mode: "max" # "max" means higher metric value is better, can be also "min"
+ auto_insert_metric_name: True # when True, the checkpoints filenames will contain the metric name
+ save_weights_only: False # if True, then only the model’s weights will be saved
+ every_n_train_steps: null # number of training steps between checkpoints
+ train_time_interval: null # checkpoints are monitored at the specified time interval
+ every_n_epochs: 10 # number of epochs between checkpoints
+ save_on_train_epoch_end: null # whether to run checkpointing at the end of the training epoch or the end of validation
diff --git a/configs/callbacks/model_summary.yaml b/configs/callbacks/model_summary.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6e5368d0e94298cce6d5421365b4583bd763ba92
--- /dev/null
+++ b/configs/callbacks/model_summary.yaml
@@ -0,0 +1,5 @@
+# https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.RichModelSummary.html
+
+model_summary:
+ _target_: lightning.pytorch.callbacks.RichModelSummary
+ max_depth: 3 # the maximum depth of layer nesting that the summary will include
diff --git a/configs/callbacks/none.yaml b/configs/callbacks/none.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/configs/callbacks/rich_progress_bar.yaml b/configs/callbacks/rich_progress_bar.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..de6f1ccb11205a4db93645fb6f297e50205de172
--- /dev/null
+++ b/configs/callbacks/rich_progress_bar.yaml
@@ -0,0 +1,4 @@
+# https://lightning.ai/docs/pytorch/latest/api/lightning.pytorch.callbacks.RichProgressBar.html
+
+rich_progress_bar:
+ _target_: lightning.pytorch.callbacks.RichProgressBar
diff --git a/configs/data/akylai.yaml b/configs/data/akylai.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..530b9f6591e95112ad8f758a2d16e4b852a2b47b
--- /dev/null
+++ b/configs/data/akylai.yaml
@@ -0,0 +1,21 @@
+_target_: matcha.data.text_mel_datamodule.TextMelDataModule
+name: akylai
+train_filelist_path: ./Kany_dataset_mk4_v1/Kany_dataset_mk4_v1_filelist_train.txt
+valid_filelist_path: ./Kany_dataset_mk4_v1/Kany_dataset_mk4_v1_filelist_test.txt
+batch_size: 12
+num_workers: 12
+pin_memory: True
+cleaners: [kyrgyz_cleaners]
+add_blank: True
+n_spks: 1
+n_fft: 1024
+n_feats: 80
+sample_rate: 22050
+hop_length: 256
+win_length: 1024
+f_min: 0
+f_max: 8000
+data_statistics: # Computed for ljspeech dataset
+ mel_mean: -5.638045310974121
+ mel_std: 2.6814498901367188
+seed: ${seed}
diff --git a/configs/data/akylai_multi.yaml b/configs/data/akylai_multi.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1afb6f351bcca738d53031555a23bd36140bfacc
--- /dev/null
+++ b/configs/data/akylai_multi.yaml
@@ -0,0 +1,21 @@
+_target_: matcha.data.text_mel_datamodule.TextMelDataModule
+name: akylai_multi
+train_filelist_path: ./akylai_multi_dataset/akylai_mlspk_filelist_train.txt
+valid_filelist_path: ./akylai_multi_dataset/akylai_mlspk_filelist_test.txt
+batch_size: 32
+num_workers: 20
+pin_memory: True
+cleaners: [kyrgyz_cleaners]
+add_blank: True
+n_spks: 2
+n_fft: 1024
+n_feats: 80
+sample_rate: 22050
+hop_length: 256
+win_length: 1024
+f_min: 0
+f_max: 8000
+data_statistics:
+ mel_mean: -5.6814561
+ mel_std: 2.7337122
+seed: ${seed}
diff --git a/configs/data/hi-fi_en-US_female.yaml b/configs/data/hi-fi_en-US_female.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1269f9b3b421d27a204bb0697e2f27a0fa0864a3
--- /dev/null
+++ b/configs/data/hi-fi_en-US_female.yaml
@@ -0,0 +1,14 @@
+defaults:
+ - ljspeech
+ - _self_
+
+# Dataset URL: https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/
+_target_: matcha.data.text_mel_datamodule.TextMelDataModule
+name: hi-fi_en-US_female
+train_filelist_path: data/filelists/hi-fi-captain-en-us-female_train.txt
+valid_filelist_path: data/filelists/hi-fi-captain-en-us-female_val.txt
+batch_size: 32
+cleaners: [english_cleaners_piper]
+data_statistics: # Computed for this dataset
+ mel_mean: -6.38385
+ mel_std: 2.541796
diff --git a/configs/data/ljspeech.yaml b/configs/data/ljspeech.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..569f4d86f2293b90ab8ff990b06b4f042add7680
--- /dev/null
+++ b/configs/data/ljspeech.yaml
@@ -0,0 +1,22 @@
+_target_: matcha.data.text_mel_datamodule.TextMelDataModule
+name: ljspeech
+train_filelist_path: /content/kany_dataset/kany_filelist_train.txt
+valid_filelist_path: /content/kany_dataset/kany_filelist_test.txt
+batch_size: 16
+num_workers: 20
+pin_memory: True
+cleaners: [kyrgyz_cleaners]
+add_blank: True
+n_spks: 1
+n_fft: 1024
+n_feats: 80
+sample_rate: 22050
+hop_length: 256
+win_length: 1024
+f_min: 0
+f_max: 8000
+data_statistics: # Computed for ljspeech dataset
+ mel_mean: -5.68145561
+ mel_std: 2.7337122
+seed: ${seed}
+
diff --git a/configs/data/vctk.yaml b/configs/data/vctk.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ba11cc63371ad6308d6711513268de7efe50eed9
--- /dev/null
+++ b/configs/data/vctk.yaml
@@ -0,0 +1,14 @@
+defaults:
+ - ljspeech
+ - _self_
+
+_target_: matcha.data.text_mel_datamodule.TextMelDataModule
+name: vctk
+train_filelist_path: data/filelists/vctk_audio_sid_text_train_filelist.txt
+valid_filelist_path: data/filelists/vctk_audio_sid_text_val_filelist.txt
+batch_size: 32
+add_blank: True
+n_spks: 109
+data_statistics: # Computed for vctk dataset
+ mel_mean: -6.630575
+ mel_std: 2.482914
diff --git a/configs/debug/default.yaml b/configs/debug/default.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e3932c82585fbe44047c1569a5cfe9ee9895c71a
--- /dev/null
+++ b/configs/debug/default.yaml
@@ -0,0 +1,35 @@
+# @package _global_
+
+# default debugging setup, runs 1 full epoch
+# other debugging configs can inherit from this one
+
+# overwrite task name so debugging logs are stored in separate folder
+task_name: "debug"
+
+# disable callbacks and loggers during debugging
+# callbacks: null
+# logger: null
+
+extras:
+ ignore_warnings: False
+ enforce_tags: False
+
+# sets level of all command line loggers to 'DEBUG'
+# https://hydra.cc/docs/tutorials/basic/running_your_app/logging/
+hydra:
+ job_logging:
+ root:
+ level: DEBUG
+
+ # use this to also set hydra loggers to 'DEBUG'
+ # verbose: True
+
+trainer:
+ max_epochs: 1
+ accelerator: cpu # debuggers don't like gpus
+ devices: 1 # debuggers don't like multiprocessing
+ detect_anomaly: true # raise exception if NaN or +/-inf is detected in any tensor
+
+data:
+ num_workers: 0 # debuggers don't like multiprocessing
+ pin_memory: False # disable gpu memory pin
diff --git a/configs/debug/fdr.yaml b/configs/debug/fdr.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7f2d34fa37c31017e749d5a4fc5ae6763e688b46
--- /dev/null
+++ b/configs/debug/fdr.yaml
@@ -0,0 +1,9 @@
+# @package _global_
+
+# runs 1 train, 1 validation and 1 test step
+
+defaults:
+ - default
+
+trainer:
+ fast_dev_run: true
diff --git a/configs/debug/limit.yaml b/configs/debug/limit.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..514d77fbd1475b03fff0372e3da3c2fa7ea7d190
--- /dev/null
+++ b/configs/debug/limit.yaml
@@ -0,0 +1,12 @@
+# @package _global_
+
+# uses only 1% of the training data and 5% of validation/test data
+
+defaults:
+ - default
+
+trainer:
+ max_epochs: 3
+ limit_train_batches: 0.01
+ limit_val_batches: 0.05
+ limit_test_batches: 0.05
diff --git a/configs/debug/overfit.yaml b/configs/debug/overfit.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9906586a67a12aa81ff69138f589a366dbe2222f
--- /dev/null
+++ b/configs/debug/overfit.yaml
@@ -0,0 +1,13 @@
+# @package _global_
+
+# overfits to 3 batches
+
+defaults:
+ - default
+
+trainer:
+ max_epochs: 20
+ overfit_batches: 3
+
+# model ckpt and early stopping need to be disabled during overfitting
+callbacks: null
diff --git a/configs/debug/profiler.yaml b/configs/debug/profiler.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..266295f15e0166e1d1b58b88caa7673f4b6493b5
--- /dev/null
+++ b/configs/debug/profiler.yaml
@@ -0,0 +1,15 @@
+# @package _global_
+
+# runs with execution time profiling
+
+defaults:
+ - default
+
+trainer:
+ max_epochs: 1
+ # profiler: "simple"
+ profiler: "advanced"
+ # profiler: "pytorch"
+ accelerator: gpu
+
+ limit_train_batches: 0.02
diff --git a/configs/eval.yaml b/configs/eval.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..52cc42ffec5ab0d5373fb14ef68165b9c165aa53
--- /dev/null
+++ b/configs/eval.yaml
@@ -0,0 +1,18 @@
+# @package _global_
+
+defaults:
+ - _self_
+ - data: akylai # choose datamodule with `test_dataloader()` for evaluation
+ - model: matcha
+ - logger: null
+ - trainer: default
+ - paths: default
+ - extras: default
+ - hydra: default
+
+task_name: "eval"
+
+tags: ["dev"]
+
+# passing checkpoint path is necessary for evaluation
+ckpt_path: ???
diff --git a/configs/experiment/akylai.yaml b/configs/experiment/akylai.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..081dabc08372062d3fbff25ce2bcd7b9b52273a8
--- /dev/null
+++ b/configs/experiment/akylai.yaml
@@ -0,0 +1,14 @@
+# @package _global_
+
+# to execute this experiment run:
+# python train.py experiment=multispeaker
+
+defaults:
+ - override /data: akylai.yaml
+
+# all parameters below will be merged with parameters from default configurations set above
+# this allows you to overwrite only specified parameters
+
+tags: ["akylai"]
+
+run_name: akylai
diff --git a/configs/experiment/akylai_multi.yaml b/configs/experiment/akylai_multi.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0d347e4044438c043dedcbafce44e4c1abd3fa79
--- /dev/null
+++ b/configs/experiment/akylai_multi.yaml
@@ -0,0 +1,14 @@
+# @package _global_
+
+# to execute this experiment run:
+# python train.py experiment=multispeaker
+
+defaults:
+ - override /data: akylai_multi.yaml
+
+# all parameters below will be merged with parameters from default configurations set above
+# this allows you to overwrite only specified parameters
+
+tags: ["akylai_multi"]
+
+run_name: akylai_multi
\ No newline at end of file
diff --git a/configs/experiment/hifi_dataset_piper_phonemizer.yaml b/configs/experiment/hifi_dataset_piper_phonemizer.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..7e6c57a0d0a399f7463f4ff2d96e1928c435779b
--- /dev/null
+++ b/configs/experiment/hifi_dataset_piper_phonemizer.yaml
@@ -0,0 +1,14 @@
+# @package _global_
+
+# to execute this experiment run:
+# python train.py experiment=multispeaker
+
+defaults:
+ - override /data: hi-fi_en-US_female.yaml
+
+# all parameters below will be merged with parameters from default configurations set above
+# this allows you to overwrite only specified parameters
+
+tags: ["hi-fi", "single_speaker", "piper_phonemizer", "en_US", "female"]
+
+run_name: hi-fi_en-US_female_piper_phonemizer
diff --git a/configs/experiment/ljspeech.yaml b/configs/experiment/ljspeech.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d5723f42cf3552226c42bd91202cc18818b685f0
--- /dev/null
+++ b/configs/experiment/ljspeech.yaml
@@ -0,0 +1,14 @@
+# @package _global_
+
+# to execute this experiment run:
+# python train.py experiment=multispeaker
+
+defaults:
+ - override /data: ljspeech.yaml
+
+# all parameters below will be merged with parameters from default configurations set above
+# this allows you to overwrite only specified parameters
+
+tags: ["ljspeech"]
+
+run_name: ljspeech
diff --git a/configs/experiment/ljspeech_min_memory.yaml b/configs/experiment/ljspeech_min_memory.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ef554dc633c392b1592d90d9d7734f2329264fdd
--- /dev/null
+++ b/configs/experiment/ljspeech_min_memory.yaml
@@ -0,0 +1,18 @@
+# @package _global_
+
+# to execute this experiment run:
+# python train.py experiment=multispeaker
+
+defaults:
+ - override /data: ljspeech.yaml
+
+# all parameters below will be merged with parameters from default configurations set above
+# this allows you to overwrite only specified parameters
+
+tags: ["ljspeech"]
+
+run_name: ljspeech_min
+
+
+model:
+ out_size: 172
diff --git a/configs/experiment/multispeaker.yaml b/configs/experiment/multispeaker.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..553842f4e2168db0fee4e44db11b5d086295b044
--- /dev/null
+++ b/configs/experiment/multispeaker.yaml
@@ -0,0 +1,14 @@
+# @package _global_
+
+# to execute this experiment run:
+# python train.py experiment=multispeaker
+
+defaults:
+ - override /data: vctk.yaml
+
+# all parameters below will be merged with parameters from default configurations set above
+# this allows you to overwrite only specified parameters
+
+tags: ["multispeaker"]
+
+run_name: multispeaker
diff --git a/configs/extras/default.yaml b/configs/extras/default.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b9c6b622283a647fbc513166fc14f016cc3ed8a0
--- /dev/null
+++ b/configs/extras/default.yaml
@@ -0,0 +1,8 @@
+# disable python warnings if they annoy you
+ignore_warnings: False
+
+# ask user for tags if none are provided in the config
+enforce_tags: True
+
+# pretty print config tree at the start of the run using Rich library
+print_config: True
diff --git a/configs/hparams_search/mnist_optuna.yaml b/configs/hparams_search/mnist_optuna.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1391183ebcdec3d8f5eb61374e0719d13c7545da
--- /dev/null
+++ b/configs/hparams_search/mnist_optuna.yaml
@@ -0,0 +1,52 @@
+# @package _global_
+
+# example hyperparameter optimization of some experiment with Optuna:
+# python train.py -m hparams_search=mnist_optuna experiment=example
+
+defaults:
+ - override /hydra/sweeper: optuna
+
+# choose metric which will be optimized by Optuna
+# make sure this is the correct name of some metric logged in lightning module!
+optimized_metric: "val/acc_best"
+
+# here we define Optuna hyperparameter search
+# it optimizes for value returned from function with @hydra.main decorator
+# docs: https://hydra.cc/docs/next/plugins/optuna_sweeper
+hydra:
+ mode: "MULTIRUN" # set hydra to multirun by default if this config is attached
+
+ sweeper:
+ _target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper
+
+ # storage URL to persist optimization results
+ # for example, you can use SQLite if you set 'sqlite:///example.db'
+ storage: null
+
+ # name of the study to persist optimization results
+ study_name: null
+
+ # number of parallel workers
+ n_jobs: 1
+
+ # 'minimize' or 'maximize' the objective
+ direction: maximize
+
+ # total number of runs that will be executed
+ n_trials: 20
+
+ # choose Optuna hyperparameter sampler
+ # you can choose bayesian sampler (tpe), random search (without optimization), grid sampler, and others
+ # docs: https://optuna.readthedocs.io/en/stable/reference/samplers.html
+ sampler:
+ _target_: optuna.samplers.TPESampler
+ seed: 1234
+ n_startup_trials: 10 # number of random sampling runs before optimization starts
+
+ # define hyperparameter search space
+ params:
+ model.optimizer.lr: interval(0.0001, 0.1)
+ data.batch_size: choice(32, 64, 128, 256)
+ model.net.lin1_size: choice(64, 128, 256)
+ model.net.lin2_size: choice(64, 128, 256)
+ model.net.lin3_size: choice(32, 64, 128, 256)
diff --git a/configs/hydra/default.yaml b/configs/hydra/default.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1533136b22802a4f81e5387b74e407289edce94d
--- /dev/null
+++ b/configs/hydra/default.yaml
@@ -0,0 +1,19 @@
+# https://hydra.cc/docs/configure_hydra/intro/
+
+# enable color logging
+defaults:
+ - override hydra_logging: colorlog
+ - override job_logging: colorlog
+
+# output directory, generated dynamically on each run
+run:
+ dir: ${paths.log_dir}/${task_name}/${run_name}/runs/${now:%Y-%m-%d}_${now:%H-%M-%S}
+sweep:
+ dir: ${paths.log_dir}/${task_name}/${run_name}/multiruns/${now:%Y-%m-%d}_${now:%H-%M-%S}
+ subdir: ${hydra.job.num}
+
+job_logging:
+ handlers:
+ file:
+ # Incorporates fix from https://github.com/facebookresearch/hydra/pull/2242
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
diff --git a/configs/local/.gitkeep b/configs/local/.gitkeep
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/configs/logger/aim.yaml b/configs/logger/aim.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8f9f6adad7feb2780c2efd5ddb0ed053621e05f8
--- /dev/null
+++ b/configs/logger/aim.yaml
@@ -0,0 +1,28 @@
+# https://aimstack.io/
+
+# example usage in lightning module:
+# https://github.com/aimhubio/aim/blob/main/examples/pytorch_lightning_track.py
+
+# open the Aim UI with the following command (run in the folder containing the `.aim` folder):
+# `aim up`
+
+aim:
+ _target_: aim.pytorch_lightning.AimLogger
+ repo: ${paths.root_dir} # .aim folder will be created here
+ # repo: "aim://ip_address:port" # can instead provide IP address pointing to Aim remote tracking server which manages the repo, see https://aimstack.readthedocs.io/en/latest/using/remote_tracking.html#
+
+ # aim allows to group runs under experiment name
+ experiment: null # any string, set to "default" if not specified
+
+ train_metric_prefix: "train/"
+ val_metric_prefix: "val/"
+ test_metric_prefix: "test/"
+
+ # sets the tracking interval in seconds for system usage metrics (CPU, GPU, memory, etc.)
+ system_tracking_interval: 10 # set to null to disable system metrics tracking
+
+ # enable/disable logging of system params such as installed packages, git info, env vars, etc.
+ log_system_params: true
+
+ # enable/disable tracking console logs (default value is true)
+ capture_terminal_logs: false # set to false to avoid infinite console log loop issue https://github.com/aimhubio/aim/issues/2550
diff --git a/configs/logger/comet.yaml b/configs/logger/comet.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e0789274e2137ee6c97ca37a5d56c2b8abaf0aaa
--- /dev/null
+++ b/configs/logger/comet.yaml
@@ -0,0 +1,12 @@
+# https://www.comet.ml
+
+comet:
+ _target_: lightning.pytorch.loggers.comet.CometLogger
+ api_key: ${oc.env:COMET_API_TOKEN} # api key is loaded from environment variable
+ save_dir: "${paths.output_dir}"
+ project_name: "lightning-hydra-template"
+ rest_api_key: null
+ # experiment_name: ""
+ experiment_key: null # set to resume experiment
+ offline: False
+ prefix: ""
diff --git a/configs/logger/csv.yaml b/configs/logger/csv.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fa028e9c146430c319101ffdfce466514338591c
--- /dev/null
+++ b/configs/logger/csv.yaml
@@ -0,0 +1,7 @@
+# csv logger built in lightning
+
+csv:
+ _target_: lightning.pytorch.loggers.csv_logs.CSVLogger
+ save_dir: "${paths.output_dir}"
+ name: "csv/"
+ prefix: ""
diff --git a/configs/logger/many_loggers.yaml b/configs/logger/many_loggers.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..dd586800bdccb4e8f4b0236a181b7ddd756ba9ab
--- /dev/null
+++ b/configs/logger/many_loggers.yaml
@@ -0,0 +1,9 @@
+# train with many loggers at once
+
+defaults:
+ # - comet
+ - csv
+ # - mlflow
+ # - neptune
+ - tensorboard
+ - wandb
diff --git a/configs/logger/mlflow.yaml b/configs/logger/mlflow.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f8fb7e685fa27fc8141387a421b90a0b9b492d9e
--- /dev/null
+++ b/configs/logger/mlflow.yaml
@@ -0,0 +1,12 @@
+# https://mlflow.org
+
+mlflow:
+ _target_: lightning.pytorch.loggers.mlflow.MLFlowLogger
+ # experiment_name: ""
+ # run_name: ""
+ tracking_uri: ${paths.log_dir}/mlflow/mlruns # run `mlflow ui` command inside the `logs/mlflow/` dir to open the UI
+ tags: null
+ # save_dir: "./mlruns"
+ prefix: ""
+ artifact_location: null
+ # run_id: ""
diff --git a/configs/logger/neptune.yaml b/configs/logger/neptune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8233c140018ecce6ab62971beed269991d31c89b
--- /dev/null
+++ b/configs/logger/neptune.yaml
@@ -0,0 +1,9 @@
+# https://neptune.ai
+
+neptune:
+ _target_: lightning.pytorch.loggers.neptune.NeptuneLogger
+ api_key: ${oc.env:NEPTUNE_API_TOKEN} # api key is loaded from environment variable
+ project: username/lightning-hydra-template
+ # name: ""
+ log_model_checkpoints: True
+ prefix: ""
diff --git a/configs/logger/tensorboard.yaml b/configs/logger/tensorboard.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..2bd31f6d8ba68d1f5c36a804885d5b9f9c1a9302
--- /dev/null
+++ b/configs/logger/tensorboard.yaml
@@ -0,0 +1,10 @@
+# https://www.tensorflow.org/tensorboard/
+
+tensorboard:
+ _target_: lightning.pytorch.loggers.tensorboard.TensorBoardLogger
+ save_dir: "${paths.output_dir}/tensorboard/"
+ name: null
+ log_graph: False
+ default_hp_metric: True
+ prefix: ""
+ # version: ""
diff --git a/configs/logger/wandb.yaml b/configs/logger/wandb.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ece165889b3d0d9dc750a8f3c7454188cfdf12b7
--- /dev/null
+++ b/configs/logger/wandb.yaml
@@ -0,0 +1,16 @@
+# https://wandb.ai
+
+wandb:
+ _target_: lightning.pytorch.loggers.wandb.WandbLogger
+ # name: "" # name of the run (normally generated by wandb)
+ save_dir: "${paths.output_dir}"
+ offline: False
+ id: null # pass correct id to resume experiment!
+ anonymous: null # enable anonymous logging
+ project: "lightning-hydra-template"
+ log_model: False # upload lightning ckpts
+ prefix: "" # a string to put at the beginning of metric keys
+ # entity: "" # set to name of your wandb team
+ group: ""
+ tags: []
+ job_type: ""
diff --git a/configs/model/cfm/default.yaml b/configs/model/cfm/default.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..0d1d9609e2d05c7b0a12a26115520340ac18e584
--- /dev/null
+++ b/configs/model/cfm/default.yaml
@@ -0,0 +1,3 @@
+name: CFM
+solver: euler
+sigma_min: 1e-4
diff --git a/configs/model/decoder/default.yaml b/configs/model/decoder/default.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..aaa00e63402ade5c76247a2f1d6b294ec3c61e63
--- /dev/null
+++ b/configs/model/decoder/default.yaml
@@ -0,0 +1,7 @@
+channels: [256, 256]
+dropout: 0.05
+attention_head_dim: 64
+n_blocks: 1
+num_mid_blocks: 2
+num_heads: 2
+act_fn: snakebeta
diff --git a/configs/model/encoder/default.yaml b/configs/model/encoder/default.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d4d5e5adee8f707bd384b682a3ad9a116c40c6ed
--- /dev/null
+++ b/configs/model/encoder/default.yaml
@@ -0,0 +1,18 @@
+encoder_type: RoPE Encoder
+encoder_params:
+ n_feats: ${model.n_feats}
+ n_channels: 192
+ filter_channels: 768
+ filter_channels_dp: 256
+ n_heads: 2
+ n_layers: 6
+ kernel_size: 3
+ p_dropout: 0.1
+ spk_emb_dim: 64
+ n_spks: 1
+ prenet: true
+
+duration_predictor_params:
+ filter_channels_dp: ${model.encoder.encoder_params.filter_channels_dp}
+ kernel_size: 3
+ p_dropout: ${model.encoder.encoder_params.p_dropout}
diff --git a/configs/model/matcha.yaml b/configs/model/matcha.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..36f6eafbdcaa324f7494a4b97a7590da7824f357
--- /dev/null
+++ b/configs/model/matcha.yaml
@@ -0,0 +1,15 @@
+defaults:
+ - _self_
+ - encoder: default.yaml
+ - decoder: default.yaml
+ - cfm: default.yaml
+ - optimizer: adam.yaml
+
+_target_: matcha.models.matcha_tts.MatchaTTS
+n_vocab: 178
+n_spks: ${data.n_spks}
+spk_emb_dim: 64
+n_feats: 80
+data_statistics: ${data.data_statistics}
+out_size: null # Must be divisible by 4
+prior_loss: true
diff --git a/configs/model/optimizer/adam.yaml b/configs/model/optimizer/adam.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..42795577474eaee5b0b96845a95e1a11c9152385
--- /dev/null
+++ b/configs/model/optimizer/adam.yaml
@@ -0,0 +1,4 @@
+_target_: torch.optim.Adam
+_partial_: true
+lr: 1e-4
+weight_decay: 0.0
diff --git a/configs/paths/default.yaml b/configs/paths/default.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ec81db2d34712909a79be3e42e65efe08c35ecee
--- /dev/null
+++ b/configs/paths/default.yaml
@@ -0,0 +1,18 @@
+# path to root directory
+# this requires PROJECT_ROOT environment variable to exist
+# you can replace it with "." if you want the root to be the current working directory
+root_dir: ${oc.env:PROJECT_ROOT}
+
+# path to data directory
+data_dir: ${paths.root_dir}/data/
+
+# path to logging directory
+log_dir: ${paths.root_dir}/logs/
+
+# path to output directory, created dynamically by hydra
+# path generation pattern is specified in `configs/hydra/default.yaml`
+# use it to store all files generated during the run, like ckpts and metrics
+output_dir: ${hydra:runtime.output_dir}
+
+# path to working directory
+work_dir: ${hydra:runtime.cwd}
diff --git a/configs/train.yaml b/configs/train.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..f0cd014d3c33a73d5cf46e6161cb184fc55fdc39
--- /dev/null
+++ b/configs/train.yaml
@@ -0,0 +1,51 @@
+# @package _global_
+
+# specify here default configuration
+# order of defaults determines the order in which configs override each other
+defaults:
+ - _self_
+ - data: akylai
+ - model: matcha
+ - callbacks: default
+ - logger: tensorboard # set logger here or use command line (e.g. `python train.py logger=tensorboard`)
+ - trainer: default
+ - paths: default
+ - extras: default
+ - hydra: default
+
+ # experiment configs allow for version control of specific hyperparameters
+ # e.g. best hyperparameters for given model and datamodule
+ - experiment: null
+
+ # config for hyperparameter optimization
+ - hparams_search: null
+
+ # optional local config for machine/user specific settings
+ # it's optional since it doesn't need to exist and is excluded from version control
+ - optional local: default
+
+ # debugging config (enable through command line, e.g. `python train.py debug=default)
+ - debug: null
+
+# task name, determines output directory path
+task_name: "train"
+
+run_name: ???
+
+# tags to help you identify your experiments
+# you can overwrite this in experiment configs
+# overwrite from command line with `python train.py tags="[first_tag, second_tag]"`
+tags: ["dev"]
+
+# set False to skip model training
+train: True
+
+# evaluate on test set, using best model weights achieved during training
+# lightning chooses best weights based on the metric specified in checkpoint callback
+test: False
+
+# simply provide checkpoint path to resume training
+ckpt_path: "https://github.com/simonlobgromov/AkylAI_Matcha_Checkpoint/releases/download/Matcha-TTS/checkpoint_epoch.499.ckpt"
+
+# seed for random number generators in pytorch, numpy and python.random
+seed: 1234
diff --git a/configs/trainer/cpu.yaml b/configs/trainer/cpu.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b7d6767e60c956567555980654f15e7bb673a41f
--- /dev/null
+++ b/configs/trainer/cpu.yaml
@@ -0,0 +1,5 @@
+defaults:
+ - default
+
+accelerator: cpu
+devices: 1
diff --git a/configs/trainer/ddp.yaml b/configs/trainer/ddp.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..94b43e20ca7bf1f2ea92627fd46906e4f0a273a1
--- /dev/null
+++ b/configs/trainer/ddp.yaml
@@ -0,0 +1,9 @@
+defaults:
+ - default
+
+strategy: ddp
+
+accelerator: gpu
+devices: [0,1]
+num_nodes: 1
+sync_batchnorm: True
diff --git a/configs/trainer/ddp_sim.yaml b/configs/trainer/ddp_sim.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8404419e5c295654967d0dfb73a7366e75be2f1f
--- /dev/null
+++ b/configs/trainer/ddp_sim.yaml
@@ -0,0 +1,7 @@
+defaults:
+ - default
+
+# simulate DDP on CPU, useful for debugging
+accelerator: cpu
+devices: 2
+strategy: ddp_spawn
diff --git a/configs/trainer/default.yaml b/configs/trainer/default.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..631701fa235e62b81dc0beed29314946722ce9dd
--- /dev/null
+++ b/configs/trainer/default.yaml
@@ -0,0 +1,20 @@
+_target_: lightning.pytorch.trainer.Trainer
+
+default_root_dir: ${paths.output_dir}
+
+max_epochs: 710
+
+accelerator: gpu
+devices: [0, 1, 2, 3]
+
+# mixed precision for extra speed-up
+precision: 16-mixed
+
+# perform a validation loop every N training epochs
+check_val_every_n_epoch: 1
+
+# set True to to ensure deterministic results
+# makes training slower but gives more reproducibility than just setting seeds
+deterministic: False
+
+gradient_clip_val: 5.0
diff --git a/configs/trainer/gpu.yaml b/configs/trainer/gpu.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..b2389510a90f5f0161cff6ccfcb4a96097ddf9a1
--- /dev/null
+++ b/configs/trainer/gpu.yaml
@@ -0,0 +1,5 @@
+defaults:
+ - default
+
+accelerator: gpu
+devices: 1
diff --git a/configs/trainer/mps.yaml b/configs/trainer/mps.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..1ecf6d5cc3a34ca127c5510f4a18e989561e38e4
--- /dev/null
+++ b/configs/trainer/mps.yaml
@@ -0,0 +1,5 @@
+defaults:
+ - default
+
+accelerator: mps
+devices: 1
diff --git a/data b/data
new file mode 120000
index 0000000000000000000000000000000000000000..18e4b1a408c735470895e67a9e5151721c71d271
--- /dev/null
+++ b/data
@@ -0,0 +1 @@
+/home/smehta/Projects/Speech-Backbones/Grad-TTS/data
\ No newline at end of file
diff --git a/gitattributes:Zone.Identifier b/gitattributes:Zone.Identifier
new file mode 100644
index 0000000000000000000000000000000000000000..fb4b5404c39f2dff8a33bb4346afcebe48fd9e65
--- /dev/null
+++ b/gitattributes:Zone.Identifier
@@ -0,0 +1,4 @@
+[ZoneTransfer]
+ZoneId=3
+ReferrerUrl=https://huggingface.co/spaces/the-cramer-project/AkylAI_TTS_small/tree/main
+HostUrl=https://huggingface.co/spaces/the-cramer-project/AkylAI_TTS_small/resolve/main/.gitattributes?download=true
diff --git a/inference_script.py b/inference_script.py
new file mode 100644
index 0000000000000000000000000000000000000000..530ea820ce67ccc66fd13c88d05be2a98e131f10
--- /dev/null
+++ b/inference_script.py
@@ -0,0 +1,114 @@
+from pathlib import Path
+import argparse
+import soundfile as sf
+import torch
+import io
+import argparse
+from matcha.hifigan.config import v1
+from matcha.hifigan.denoiser import Denoiser
+from matcha.hifigan.env import AttrDict
+from matcha.hifigan.models import Generator as HiFiGAN
+from matcha.models.matcha_tts import MatchaTTS
+from matcha.text import sequence_to_text, text_to_sequence
+from matcha.utils.utils import intersperse
+
+
+
+
+def load_matcha( checkpoint_path, device):
+ model = MatchaTTS.load_from_checkpoint(checkpoint_path, map_location=device)
+ _ = model.eval()
+ return model
+
+def load_hifigan(checkpoint_path, device):
+ h = AttrDict(v1)
+ hifigan = HiFiGAN(h).to(device)
+ hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"])
+ _ = hifigan.eval()
+ hifigan.remove_weight_norm()
+ return hifigan
+
+def load_vocoder(checkpoint_path, device):
+ vocoder = None
+ vocoder = load_hifigan(checkpoint_path, device)
+ denoiser = Denoiser(vocoder, mode="zeros")
+ return vocoder, denoiser
+
+def process_text(i: int, text: str, device: torch.device):
+ print(f"[{i}] - Input text: {text}")
+ x = torch.tensor(
+ intersperse(text_to_sequence(text, ["kyrgyz_cleaners"]), 0),
+ dtype=torch.long,
+ device=device,
+ )[None]
+ x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
+ x_phones = sequence_to_text(x.squeeze(0).tolist())
+ print(f"[{i}] - Phonetised text: {x_phones[1::2]}")
+ return {"x_orig": text, "x": x, "x_lengths": x_lengths, "x_phones": x_phones}
+
+def to_waveform(mel, vocoder, denoiser=None):
+ audio = vocoder(mel).clamp(-1, 1)
+ if denoiser is not None:
+ audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
+ return audio.cpu().squeeze()
+
+@torch.inference_mode()
+def process_text_gradio(text):
+ output = process_text(1, text, device)
+ return output["x_phones"][1::2], output["x"], output["x_lengths"]
+
+@torch.inference_mode()
+def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk=-1):
+ spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
+ output = model.synthesise(
+ text,
+ text_length,
+ n_timesteps=n_timesteps,
+ temperature=temperature,
+ spks=spk,
+ length_scale=length_scale,
+ )
+ output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
+ sf.write('./output/out_audio.wav', output["waveform"], 22050, "PCM_24")
+
+def get_inference(text, n_timesteps=20, mel_temp = 0.667, length_scale=0.8, spk=-1):
+ phones, text, text_lengths = process_text_gradio(text)
+ synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
+
+
+def tensor_to_wav_bytes(tensor_audio, sample_rate=22050): # Байтовый формат
+ waveform = tensor_audio.cpu().numpy()
+ with io.BytesIO() as buffer:
+ sf.write(buffer, waveform, sample_rate, format='WAV')
+ wav_bytes = buffer.getvalue()
+ return wav_bytes
+
+
+
+device = torch.device("cpu")
+model_path = './checkpoints/checkpoint.ckpt'
+vocoder_path = './checkpoints/generator'
+model = load_matcha(model_path, device)
+vocoder, denoiser = load_vocoder(vocoder_path, device)
+
+def main():
+
+ parser = argparse.ArgumentParser(
+ description="Если возжелаете параметры которые вам угодны, Сэр))"
+ )
+ parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
+ parser.add_argument(
+ "--speaking_rate",
+ type=float,
+ default=0.8,
+ help="change the speaking rate, a higher value means slower speaking rate (default: 0.8)",
+ )
+ args = parser.parse_args()
+
+ get_inference(text = args.text, length_scale=args.speaking_rate)
+
+
+
+
+if __name__ == "__main__":
+ main()
diff --git a/matcha/VERSION b/matcha/VERSION
new file mode 100644
index 0000000000000000000000000000000000000000..442b1138f7851df1c22deb15fd5d6ff5b742e550
--- /dev/null
+++ b/matcha/VERSION
@@ -0,0 +1 @@
+0.0.5.1
diff --git a/matcha/__init__.py b/matcha/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/matcha/data/__init__.py b/matcha/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/matcha/data/components/__init__.py b/matcha/data/components/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/matcha/data/text_mel_datamodule.py b/matcha/data/text_mel_datamodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..704f93629f1874b88efd07609409653ffbb8338a
--- /dev/null
+++ b/matcha/data/text_mel_datamodule.py
@@ -0,0 +1,231 @@
+import random
+from typing import Any, Dict, Optional
+
+import torch
+import torchaudio as ta
+from lightning import LightningDataModule
+from torch.utils.data.dataloader import DataLoader
+
+from matcha.text import text_to_sequence
+from matcha.utils.audio import mel_spectrogram
+from matcha.utils.model import fix_len_compatibility, normalize
+from matcha.utils.utils import intersperse
+
+
+def parse_filelist(filelist_path, split_char="|"):
+ with open(filelist_path, encoding="utf-8") as f:
+ filepaths_and_text = [line.strip().split(split_char) for line in f]
+ return filepaths_and_text
+
+
+class TextMelDataModule(LightningDataModule):
+ def __init__( # pylint: disable=unused-argument
+ self,
+ name,
+ train_filelist_path,
+ valid_filelist_path,
+ batch_size,
+ num_workers,
+ pin_memory,
+ cleaners,
+ add_blank,
+ n_spks,
+ n_fft,
+ n_feats,
+ sample_rate,
+ hop_length,
+ win_length,
+ f_min,
+ f_max,
+ data_statistics,
+ seed,
+ ):
+ super().__init__()
+
+ # this line allows to access init params with 'self.hparams' attribute
+ # also ensures init params will be stored in ckpt
+ self.save_hyperparameters(logger=False)
+
+ def setup(self, stage: Optional[str] = None): # pylint: disable=unused-argument
+ """Load data. Set variables: `self.data_train`, `self.data_val`, `self.data_test`.
+
+ This method is called by lightning with both `trainer.fit()` and `trainer.test()`, so be
+ careful not to execute things like random split twice!
+ """
+ # load and split datasets only if not loaded already
+
+ self.trainset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
+ self.hparams.train_filelist_path,
+ self.hparams.n_spks,
+ self.hparams.cleaners,
+ self.hparams.add_blank,
+ self.hparams.n_fft,
+ self.hparams.n_feats,
+ self.hparams.sample_rate,
+ self.hparams.hop_length,
+ self.hparams.win_length,
+ self.hparams.f_min,
+ self.hparams.f_max,
+ self.hparams.data_statistics,
+ self.hparams.seed,
+ )
+ self.validset = TextMelDataset( # pylint: disable=attribute-defined-outside-init
+ self.hparams.valid_filelist_path,
+ self.hparams.n_spks,
+ self.hparams.cleaners,
+ self.hparams.add_blank,
+ self.hparams.n_fft,
+ self.hparams.n_feats,
+ self.hparams.sample_rate,
+ self.hparams.hop_length,
+ self.hparams.win_length,
+ self.hparams.f_min,
+ self.hparams.f_max,
+ self.hparams.data_statistics,
+ self.hparams.seed,
+ )
+
+ def train_dataloader(self):
+ return DataLoader(
+ dataset=self.trainset,
+ batch_size=self.hparams.batch_size,
+ num_workers=self.hparams.num_workers,
+ pin_memory=self.hparams.pin_memory,
+ shuffle=True,
+ collate_fn=TextMelBatchCollate(self.hparams.n_spks),
+ )
+
+ def val_dataloader(self):
+ return DataLoader(
+ dataset=self.validset,
+ batch_size=self.hparams.batch_size,
+ num_workers=self.hparams.num_workers,
+ pin_memory=self.hparams.pin_memory,
+ shuffle=False,
+ collate_fn=TextMelBatchCollate(self.hparams.n_spks),
+ )
+
+ def teardown(self, stage: Optional[str] = None):
+ """Clean up after fit or test."""
+ pass # pylint: disable=unnecessary-pass
+
+ def state_dict(self): # pylint: disable=no-self-use
+ """Extra things to save to checkpoint."""
+ return {}
+
+ def load_state_dict(self, state_dict: Dict[str, Any]):
+ """Things to do when loading checkpoint."""
+ pass # pylint: disable=unnecessary-pass
+
+
+class TextMelDataset(torch.utils.data.Dataset):
+ def __init__(
+ self,
+ filelist_path,
+ n_spks,
+ cleaners,
+ add_blank=True,
+ n_fft=1024,
+ n_mels=80,
+ sample_rate=22050,
+ hop_length=256,
+ win_length=1024,
+ f_min=0.0,
+ f_max=8000,
+ data_parameters=None,
+ seed=None,
+ ):
+ self.filepaths_and_text = parse_filelist(filelist_path)
+ self.n_spks = n_spks
+ self.cleaners = cleaners
+ self.add_blank = add_blank
+ self.n_fft = n_fft
+ self.n_mels = n_mels
+ self.sample_rate = sample_rate
+ self.hop_length = hop_length
+ self.win_length = win_length
+ self.f_min = f_min
+ self.f_max = f_max
+ if data_parameters is not None:
+ self.data_parameters = data_parameters
+ else:
+ self.data_parameters = {"mel_mean": 0, "mel_std": 1}
+ random.seed(seed)
+ random.shuffle(self.filepaths_and_text)
+
+ def get_datapoint(self, filepath_and_text):
+ if self.n_spks > 1:
+ filepath, spk, text = (
+ filepath_and_text[0],
+ int(filepath_and_text[1]),
+ filepath_and_text[2],
+ )
+ else:
+ filepath, text = filepath_and_text[0], filepath_and_text[1]
+ spk = None
+
+ text = self.get_text(text, add_blank=self.add_blank)
+ mel = self.get_mel(filepath)
+
+ return {"x": text, "y": mel, "spk": spk}
+
+ def get_mel(self, filepath):
+ audio, sr = ta.load(filepath)
+ assert sr == self.sample_rate
+ mel = mel_spectrogram(
+ audio,
+ self.n_fft,
+ self.n_mels,
+ self.sample_rate,
+ self.hop_length,
+ self.win_length,
+ self.f_min,
+ self.f_max,
+ center=False,
+ ).squeeze()
+ mel = normalize(mel, self.data_parameters["mel_mean"], self.data_parameters["mel_std"])
+ return mel
+
+ def get_text(self, text, add_blank=True):
+ text_norm = text_to_sequence(text, self.cleaners)
+ if self.add_blank:
+ text_norm = intersperse(text_norm, 0)
+ text_norm = torch.IntTensor(text_norm)
+ return text_norm
+
+ def __getitem__(self, index):
+ datapoint = self.get_datapoint(self.filepaths_and_text[index])
+ return datapoint
+
+ def __len__(self):
+ return len(self.filepaths_and_text)
+
+
+class TextMelBatchCollate:
+ def __init__(self, n_spks):
+ self.n_spks = n_spks
+
+ def __call__(self, batch):
+ B = len(batch)
+ y_max_length = max([item["y"].shape[-1] for item in batch])
+ y_max_length = fix_len_compatibility(y_max_length)
+ x_max_length = max([item["x"].shape[-1] for item in batch])
+ n_feats = batch[0]["y"].shape[-2]
+
+ y = torch.zeros((B, n_feats, y_max_length), dtype=torch.float32)
+ x = torch.zeros((B, x_max_length), dtype=torch.long)
+ y_lengths, x_lengths = [], []
+ spks = []
+ for i, item in enumerate(batch):
+ y_, x_ = item["y"], item["x"]
+ y_lengths.append(y_.shape[-1])
+ x_lengths.append(x_.shape[-1])
+ y[i, :, : y_.shape[-1]] = y_
+ x[i, : x_.shape[-1]] = x_
+ spks.append(item["spk"])
+
+ y_lengths = torch.tensor(y_lengths, dtype=torch.long)
+ x_lengths = torch.tensor(x_lengths, dtype=torch.long)
+ spks = torch.tensor(spks, dtype=torch.long) if self.n_spks > 1 else None
+
+ return {"x": x, "x_lengths": x_lengths, "y": y, "y_lengths": y_lengths, "spks": spks}
diff --git a/matcha/hifigan/LICENSE b/matcha/hifigan/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..91751daed806f63ac594cf077a3065f719a41662
--- /dev/null
+++ b/matcha/hifigan/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2020 Jungil Kong
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/matcha/hifigan/README.md b/matcha/hifigan/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..5db25850451a794b1db1b15b08e82c1d802edbb3
--- /dev/null
+++ b/matcha/hifigan/README.md
@@ -0,0 +1,101 @@
+# HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis
+
+### Jungil Kong, Jaehyeon Kim, Jaekyoung Bae
+
+In our [paper](https://arxiv.org/abs/2010.05646),
+we proposed HiFi-GAN: a GAN-based model capable of generating high fidelity speech efficiently.
+We provide our implementation and pretrained models as open source in this repository.
+
+**Abstract :**
+Several recent work on speech synthesis have employed generative adversarial networks (GANs) to produce raw waveforms.
+Although such methods improve the sampling efficiency and memory usage,
+their sample quality has not yet reached that of autoregressive and flow-based generative models.
+In this work, we propose HiFi-GAN, which achieves both efficient and high-fidelity speech synthesis.
+As speech audio consists of sinusoidal signals with various periods,
+we demonstrate that modeling periodic patterns of an audio is crucial for enhancing sample quality.
+A subjective human evaluation (mean opinion score, MOS) of a single speaker dataset indicates that our proposed method
+demonstrates similarity to human quality while generating 22.05 kHz high-fidelity audio 167.9 times faster than
+real-time on a single V100 GPU. We further show the generality of HiFi-GAN to the mel-spectrogram inversion of unseen
+speakers and end-to-end speech synthesis. Finally, a small footprint version of HiFi-GAN generates samples 13.4 times
+faster than real-time on CPU with comparable quality to an autoregressive counterpart.
+
+Visit our [demo website](https://jik876.github.io/hifi-gan-demo/) for audio samples.
+
+## Pre-requisites
+
+1. Python >= 3.6
+2. Clone this repository.
+3. Install python requirements. Please refer [requirements.txt](requirements.txt)
+4. Download and extract the [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/).
+ And move all wav files to `LJSpeech-1.1/wavs`
+
+## Training
+
+```
+python train.py --config config_v1.json
+```
+
+To train V2 or V3 Generator, replace `config_v1.json` with `config_v2.json` or `config_v3.json`.
+Checkpoints and copy of the configuration file are saved in `cp_hifigan` directory by default.
+You can change the path by adding `--checkpoint_path` option.
+
+Validation loss during training with V1 generator.
+![validation loss](./validation_loss.png)
+
+## Pretrained Model
+
+You can also use pretrained models we provide.
+[Download pretrained models](https://drive.google.com/drive/folders/1-eEYTB5Av9jNql0WGBlRoi-WH2J7bp5Y?usp=sharing)
+Details of each folder are as in follows:
+
+| Folder Name | Generator | Dataset | Fine-Tuned |
+| ------------ | --------- | --------- | ------------------------------------------------------ |
+| LJ_V1 | V1 | LJSpeech | No |
+| LJ_V2 | V2 | LJSpeech | No |
+| LJ_V3 | V3 | LJSpeech | No |
+| LJ_FT_T2_V1 | V1 | LJSpeech | Yes ([Tacotron2](https://github.com/NVIDIA/tacotron2)) |
+| LJ_FT_T2_V2 | V2 | LJSpeech | Yes ([Tacotron2](https://github.com/NVIDIA/tacotron2)) |
+| LJ_FT_T2_V3 | V3 | LJSpeech | Yes ([Tacotron2](https://github.com/NVIDIA/tacotron2)) |
+| VCTK_V1 | V1 | VCTK | No |
+| VCTK_V2 | V2 | VCTK | No |
+| VCTK_V3 | V3 | VCTK | No |
+| UNIVERSAL_V1 | V1 | Universal | No |
+
+We provide the universal model with discriminator weights that can be used as a base for transfer learning to other datasets.
+
+## Fine-Tuning
+
+1. Generate mel-spectrograms in numpy format using [Tacotron2](https://github.com/NVIDIA/tacotron2) with teacher-forcing.
+ The file name of the generated mel-spectrogram should match the audio file and the extension should be `.npy`.
+ Example:
+ ` Audio File : LJ001-0001.wav
+Mel-Spectrogram File : LJ001-0001.npy`
+2. Create `ft_dataset` folder and copy the generated mel-spectrogram files into it.
+3. Run the following command.
+ ```
+ python train.py --fine_tuning True --config config_v1.json
+ ```
+ For other command line options, please refer to the training section.
+
+## Inference from wav file
+
+1. Make `test_files` directory and copy wav files into the directory.
+2. Run the following command.
+ ` python inference.py --checkpoint_file [generator checkpoint file path]`
+ Generated wav files are saved in `generated_files` by default.
+ You can change the path by adding `--output_dir` option.
+
+## Inference for end-to-end speech synthesis
+
+1. Make `test_mel_files` directory and copy generated mel-spectrogram files into the directory.
+ You can generate mel-spectrograms using [Tacotron2](https://github.com/NVIDIA/tacotron2),
+ [Glow-TTS](https://github.com/jaywalnut310/glow-tts) and so forth.
+2. Run the following command.
+ ` python inference_e2e.py --checkpoint_file [generator checkpoint file path]`
+ Generated wav files are saved in `generated_files_from_mel` by default.
+ You can change the path by adding `--output_dir` option.
+
+## Acknowledgements
+
+We referred to [WaveGlow](https://github.com/NVIDIA/waveglow), [MelGAN](https://github.com/descriptinc/melgan-neurips)
+and [Tacotron2](https://github.com/NVIDIA/tacotron2) to implement this.
diff --git a/matcha/hifigan/__init__.py b/matcha/hifigan/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/matcha/hifigan/config.py b/matcha/hifigan/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..b3abea9e151a08864353d32066bd4935e24b82e7
--- /dev/null
+++ b/matcha/hifigan/config.py
@@ -0,0 +1,28 @@
+v1 = {
+ "resblock": "1",
+ "num_gpus": 0,
+ "batch_size": 16,
+ "learning_rate": 0.0004,
+ "adam_b1": 0.8,
+ "adam_b2": 0.99,
+ "lr_decay": 0.999,
+ "seed": 1234,
+ "upsample_rates": [8, 8, 2, 2],
+ "upsample_kernel_sizes": [16, 16, 4, 4],
+ "upsample_initial_channel": 512,
+ "resblock_kernel_sizes": [3, 7, 11],
+ "resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
+ "resblock_initial_channel": 256,
+ "segment_size": 8192,
+ "num_mels": 80,
+ "num_freq": 1025,
+ "n_fft": 1024,
+ "hop_size": 256,
+ "win_size": 1024,
+ "sampling_rate": 22050,
+ "fmin": 0,
+ "fmax": 8000,
+ "fmax_loss": None,
+ "num_workers": 4,
+ "dist_config": {"dist_backend": "nccl", "dist_url": "tcp://localhost:54321", "world_size": 1},
+}
diff --git a/matcha/hifigan/denoiser.py b/matcha/hifigan/denoiser.py
new file mode 100644
index 0000000000000000000000000000000000000000..9fd33312a09b1940374a0e29a97fe3a1a1dac7d2
--- /dev/null
+++ b/matcha/hifigan/denoiser.py
@@ -0,0 +1,64 @@
+# Code modified from Rafael Valle's implementation https://github.com/NVIDIA/waveglow/blob/5bc2a53e20b3b533362f974cfa1ea0267ae1c2b1/denoiser.py
+
+"""Waveglow style denoiser can be used to remove the artifacts from the HiFiGAN generated audio."""
+import torch
+
+
+class Denoiser(torch.nn.Module):
+ """Removes model bias from audio produced with waveglow"""
+
+ def __init__(self, vocoder, filter_length=1024, n_overlap=4, win_length=1024, mode="zeros"):
+ super().__init__()
+ self.filter_length = filter_length
+ self.hop_length = int(filter_length / n_overlap)
+ self.win_length = win_length
+
+ dtype, device = next(vocoder.parameters()).dtype, next(vocoder.parameters()).device
+ self.device = device
+ if mode == "zeros":
+ mel_input = torch.zeros((1, 80, 88), dtype=dtype, device=device)
+ elif mode == "normal":
+ mel_input = torch.randn((1, 80, 88), dtype=dtype, device=device)
+ else:
+ raise Exception(f"Mode {mode} if not supported")
+
+ def stft_fn(audio, n_fft, hop_length, win_length, window):
+ spec = torch.stft(
+ audio,
+ n_fft=n_fft,
+ hop_length=hop_length,
+ win_length=win_length,
+ window=window,
+ return_complex=True,
+ )
+ spec = torch.view_as_real(spec)
+ return torch.sqrt(spec.pow(2).sum(-1)), torch.atan2(spec[..., -1], spec[..., 0])
+
+ self.stft = lambda x: stft_fn(
+ audio=x,
+ n_fft=self.filter_length,
+ hop_length=self.hop_length,
+ win_length=self.win_length,
+ window=torch.hann_window(self.win_length, device=device),
+ )
+ self.istft = lambda x, y: torch.istft(
+ torch.complex(x * torch.cos(y), x * torch.sin(y)),
+ n_fft=self.filter_length,
+ hop_length=self.hop_length,
+ win_length=self.win_length,
+ window=torch.hann_window(self.win_length, device=device),
+ )
+
+ with torch.no_grad():
+ bias_audio = vocoder(mel_input).float().squeeze(0)
+ bias_spec, _ = self.stft(bias_audio)
+
+ self.register_buffer("bias_spec", bias_spec[:, :, 0][:, :, None])
+
+ @torch.inference_mode()
+ def forward(self, audio, strength=0.0005):
+ audio_spec, audio_angles = self.stft(audio)
+ audio_spec_denoised = audio_spec - self.bias_spec.to(audio.device) * strength
+ audio_spec_denoised = torch.clamp(audio_spec_denoised, 0.0)
+ audio_denoised = self.istft(audio_spec_denoised, audio_angles)
+ return audio_denoised
diff --git a/matcha/hifigan/env.py b/matcha/hifigan/env.py
new file mode 100644
index 0000000000000000000000000000000000000000..9ea4f948a3f002921bf9bc24f52cbc1c0b1fc2ec
--- /dev/null
+++ b/matcha/hifigan/env.py
@@ -0,0 +1,17 @@
+""" from https://github.com/jik876/hifi-gan """
+
+import os
+import shutil
+
+
+class AttrDict(dict):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ self.__dict__ = self
+
+
+def build_env(config, config_name, path):
+ t_path = os.path.join(path, config_name)
+ if config != t_path:
+ os.makedirs(path, exist_ok=True)
+ shutil.copyfile(config, os.path.join(path, config_name))
diff --git a/matcha/hifigan/meldataset.py b/matcha/hifigan/meldataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..8b43ea7965e04a52d5427a485ee911b743057c4a
--- /dev/null
+++ b/matcha/hifigan/meldataset.py
@@ -0,0 +1,217 @@
+""" from https://github.com/jik876/hifi-gan """
+
+import math
+import os
+import random
+
+import numpy as np
+import torch
+import torch.utils.data
+from librosa.filters import mel as librosa_mel_fn
+from librosa.util import normalize
+from scipy.io.wavfile import read
+
+MAX_WAV_VALUE = 32768.0
+
+
+def load_wav(full_path):
+ sampling_rate, data = read(full_path)
+ return data, sampling_rate
+
+
+def dynamic_range_compression(x, C=1, clip_val=1e-5):
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
+
+
+def dynamic_range_decompression(x, C=1):
+ return np.exp(x) / C
+
+
+def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
+ return torch.log(torch.clamp(x, min=clip_val) * C)
+
+
+def dynamic_range_decompression_torch(x, C=1):
+ return torch.exp(x) / C
+
+
+def spectral_normalize_torch(magnitudes):
+ output = dynamic_range_compression_torch(magnitudes)
+ return output
+
+
+def spectral_de_normalize_torch(magnitudes):
+ output = dynamic_range_decompression_torch(magnitudes)
+ return output
+
+
+mel_basis = {}
+hann_window = {}
+
+
+def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
+ if torch.min(y) < -1.0:
+ print("min value is ", torch.min(y))
+ if torch.max(y) > 1.0:
+ print("max value is ", torch.max(y))
+
+ global mel_basis, hann_window # pylint: disable=global-statement
+ if fmax not in mel_basis:
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
+ mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
+ hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
+
+ y = torch.nn.functional.pad(
+ y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
+ )
+ y = y.squeeze(1)
+
+ spec = torch.view_as_real(
+ torch.stft(
+ y,
+ n_fft,
+ hop_length=hop_size,
+ win_length=win_size,
+ window=hann_window[str(y.device)],
+ center=center,
+ pad_mode="reflect",
+ normalized=False,
+ onesided=True,
+ return_complex=True,
+ )
+ )
+
+ spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
+
+ spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
+ spec = spectral_normalize_torch(spec)
+
+ return spec
+
+
+def get_dataset_filelist(a):
+ with open(a.input_training_file, encoding="utf-8") as fi:
+ training_files = [
+ os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") for x in fi.read().split("\n") if len(x) > 0
+ ]
+
+ with open(a.input_validation_file, encoding="utf-8") as fi:
+ validation_files = [
+ os.path.join(a.input_wavs_dir, x.split("|")[0] + ".wav") for x in fi.read().split("\n") if len(x) > 0
+ ]
+ return training_files, validation_files
+
+
+class MelDataset(torch.utils.data.Dataset):
+ def __init__(
+ self,
+ training_files,
+ segment_size,
+ n_fft,
+ num_mels,
+ hop_size,
+ win_size,
+ sampling_rate,
+ fmin,
+ fmax,
+ split=True,
+ shuffle=True,
+ n_cache_reuse=1,
+ device=None,
+ fmax_loss=None,
+ fine_tuning=False,
+ base_mels_path=None,
+ ):
+ self.audio_files = training_files
+ random.seed(1234)
+ if shuffle:
+ random.shuffle(self.audio_files)
+ self.segment_size = segment_size
+ self.sampling_rate = sampling_rate
+ self.split = split
+ self.n_fft = n_fft
+ self.num_mels = num_mels
+ self.hop_size = hop_size
+ self.win_size = win_size
+ self.fmin = fmin
+ self.fmax = fmax
+ self.fmax_loss = fmax_loss
+ self.cached_wav = None
+ self.n_cache_reuse = n_cache_reuse
+ self._cache_ref_count = 0
+ self.device = device
+ self.fine_tuning = fine_tuning
+ self.base_mels_path = base_mels_path
+
+ def __getitem__(self, index):
+ filename = self.audio_files[index]
+ if self._cache_ref_count == 0:
+ audio, sampling_rate = load_wav(filename)
+ audio = audio / MAX_WAV_VALUE
+ if not self.fine_tuning:
+ audio = normalize(audio) * 0.95
+ self.cached_wav = audio
+ if sampling_rate != self.sampling_rate:
+ raise ValueError(f"{sampling_rate} SR doesn't match target {self.sampling_rate} SR")
+ self._cache_ref_count = self.n_cache_reuse
+ else:
+ audio = self.cached_wav
+ self._cache_ref_count -= 1
+
+ audio = torch.FloatTensor(audio)
+ audio = audio.unsqueeze(0)
+
+ if not self.fine_tuning:
+ if self.split:
+ if audio.size(1) >= self.segment_size:
+ max_audio_start = audio.size(1) - self.segment_size
+ audio_start = random.randint(0, max_audio_start)
+ audio = audio[:, audio_start : audio_start + self.segment_size]
+ else:
+ audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), "constant")
+
+ mel = mel_spectrogram(
+ audio,
+ self.n_fft,
+ self.num_mels,
+ self.sampling_rate,
+ self.hop_size,
+ self.win_size,
+ self.fmin,
+ self.fmax,
+ center=False,
+ )
+ else:
+ mel = np.load(os.path.join(self.base_mels_path, os.path.splitext(os.path.split(filename)[-1])[0] + ".npy"))
+ mel = torch.from_numpy(mel)
+
+ if len(mel.shape) < 3:
+ mel = mel.unsqueeze(0)
+
+ if self.split:
+ frames_per_seg = math.ceil(self.segment_size / self.hop_size)
+
+ if audio.size(1) >= self.segment_size:
+ mel_start = random.randint(0, mel.size(2) - frames_per_seg - 1)
+ mel = mel[:, :, mel_start : mel_start + frames_per_seg]
+ audio = audio[:, mel_start * self.hop_size : (mel_start + frames_per_seg) * self.hop_size]
+ else:
+ mel = torch.nn.functional.pad(mel, (0, frames_per_seg - mel.size(2)), "constant")
+ audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), "constant")
+
+ mel_loss = mel_spectrogram(
+ audio,
+ self.n_fft,
+ self.num_mels,
+ self.sampling_rate,
+ self.hop_size,
+ self.win_size,
+ self.fmin,
+ self.fmax_loss,
+ center=False,
+ )
+
+ return (mel.squeeze(), audio.squeeze(0), filename, mel_loss.squeeze())
+
+ def __len__(self):
+ return len(self.audio_files)
diff --git a/matcha/hifigan/models.py b/matcha/hifigan/models.py
new file mode 100644
index 0000000000000000000000000000000000000000..d209d9a4e99ec29e4167a5a2eaa62d72b3eff694
--- /dev/null
+++ b/matcha/hifigan/models.py
@@ -0,0 +1,368 @@
+""" from https://github.com/jik876/hifi-gan """
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
+from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
+
+from .xutils import get_padding, init_weights
+
+LRELU_SLOPE = 0.1
+
+
+class ResBlock1(torch.nn.Module):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
+ super().__init__()
+ self.h = h
+ self.convs1 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[2],
+ padding=get_padding(kernel_size, dilation[2]),
+ )
+ ),
+ ]
+ )
+ self.convs1.apply(init_weights)
+
+ self.convs2 = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=1,
+ padding=get_padding(kernel_size, 1),
+ )
+ ),
+ ]
+ )
+ self.convs2.apply(init_weights)
+
+ def forward(self, x):
+ for c1, c2 in zip(self.convs1, self.convs2):
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ xt = c1(xt)
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
+ xt = c2(xt)
+ x = xt + x
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs1:
+ remove_weight_norm(l)
+ for l in self.convs2:
+ remove_weight_norm(l)
+
+
+class ResBlock2(torch.nn.Module):
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
+ super().__init__()
+ self.h = h
+ self.convs = nn.ModuleList(
+ [
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[0],
+ padding=get_padding(kernel_size, dilation[0]),
+ )
+ ),
+ weight_norm(
+ Conv1d(
+ channels,
+ channels,
+ kernel_size,
+ 1,
+ dilation=dilation[1],
+ padding=get_padding(kernel_size, dilation[1]),
+ )
+ ),
+ ]
+ )
+ self.convs.apply(init_weights)
+
+ def forward(self, x):
+ for c in self.convs:
+ xt = F.leaky_relu(x, LRELU_SLOPE)
+ xt = c(xt)
+ x = xt + x
+ return x
+
+ def remove_weight_norm(self):
+ for l in self.convs:
+ remove_weight_norm(l)
+
+
+class Generator(torch.nn.Module):
+ def __init__(self, h):
+ super().__init__()
+ self.h = h
+ self.num_kernels = len(h.resblock_kernel_sizes)
+ self.num_upsamples = len(h.upsample_rates)
+ self.conv_pre = weight_norm(Conv1d(80, h.upsample_initial_channel, 7, 1, padding=3))
+ resblock = ResBlock1 if h.resblock == "1" else ResBlock2
+
+ self.ups = nn.ModuleList()
+ for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
+ self.ups.append(
+ weight_norm(
+ ConvTranspose1d(
+ h.upsample_initial_channel // (2**i),
+ h.upsample_initial_channel // (2 ** (i + 1)),
+ k,
+ u,
+ padding=(k - u) // 2,
+ )
+ )
+ )
+
+ self.resblocks = nn.ModuleList()
+ for i in range(len(self.ups)):
+ ch = h.upsample_initial_channel // (2 ** (i + 1))
+ for _, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
+ self.resblocks.append(resblock(h, ch, k, d))
+
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
+ self.ups.apply(init_weights)
+ self.conv_post.apply(init_weights)
+
+ def forward(self, x):
+ x = self.conv_pre(x)
+ for i in range(self.num_upsamples):
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ x = self.ups[i](x)
+ xs = None
+ for j in range(self.num_kernels):
+ if xs is None:
+ xs = self.resblocks[i * self.num_kernels + j](x)
+ else:
+ xs += self.resblocks[i * self.num_kernels + j](x)
+ x = xs / self.num_kernels
+ x = F.leaky_relu(x)
+ x = self.conv_post(x)
+ x = torch.tanh(x)
+
+ return x
+
+ def remove_weight_norm(self):
+ print("Removing weight norm...")
+ for l in self.ups:
+ remove_weight_norm(l)
+ for l in self.resblocks:
+ l.remove_weight_norm()
+ remove_weight_norm(self.conv_pre)
+ remove_weight_norm(self.conv_post)
+
+
+class DiscriminatorP(torch.nn.Module):
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
+ super().__init__()
+ self.period = period
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
+ ]
+ )
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
+
+ def forward(self, x):
+ fmap = []
+
+ # 1d to 2d
+ b, c, t = x.shape
+ if t % self.period != 0: # pad first
+ n_pad = self.period - (t % self.period)
+ x = F.pad(x, (0, n_pad), "reflect")
+ t = t + n_pad
+ x = x.view(b, c, t // self.period, self.period)
+
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiPeriodDiscriminator(torch.nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.discriminators = nn.ModuleList(
+ [
+ DiscriminatorP(2),
+ DiscriminatorP(3),
+ DiscriminatorP(5),
+ DiscriminatorP(7),
+ DiscriminatorP(11),
+ ]
+ )
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for _, d in enumerate(self.discriminators):
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+class DiscriminatorS(torch.nn.Module):
+ def __init__(self, use_spectral_norm=False):
+ super().__init__()
+ norm_f = weight_norm if use_spectral_norm is False else spectral_norm
+ self.convs = nn.ModuleList(
+ [
+ norm_f(Conv1d(1, 128, 15, 1, padding=7)),
+ norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
+ norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
+ norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
+ norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
+ ]
+ )
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
+
+ def forward(self, x):
+ fmap = []
+ for l in self.convs:
+ x = l(x)
+ x = F.leaky_relu(x, LRELU_SLOPE)
+ fmap.append(x)
+ x = self.conv_post(x)
+ fmap.append(x)
+ x = torch.flatten(x, 1, -1)
+
+ return x, fmap
+
+
+class MultiScaleDiscriminator(torch.nn.Module):
+ def __init__(self):
+ super().__init__()
+ self.discriminators = nn.ModuleList(
+ [
+ DiscriminatorS(use_spectral_norm=True),
+ DiscriminatorS(),
+ DiscriminatorS(),
+ ]
+ )
+ self.meanpools = nn.ModuleList([AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)])
+
+ def forward(self, y, y_hat):
+ y_d_rs = []
+ y_d_gs = []
+ fmap_rs = []
+ fmap_gs = []
+ for i, d in enumerate(self.discriminators):
+ if i != 0:
+ y = self.meanpools[i - 1](y)
+ y_hat = self.meanpools[i - 1](y_hat)
+ y_d_r, fmap_r = d(y)
+ y_d_g, fmap_g = d(y_hat)
+ y_d_rs.append(y_d_r)
+ fmap_rs.append(fmap_r)
+ y_d_gs.append(y_d_g)
+ fmap_gs.append(fmap_g)
+
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
+
+
+def feature_loss(fmap_r, fmap_g):
+ loss = 0
+ for dr, dg in zip(fmap_r, fmap_g):
+ for rl, gl in zip(dr, dg):
+ loss += torch.mean(torch.abs(rl - gl))
+
+ return loss * 2
+
+
+def discriminator_loss(disc_real_outputs, disc_generated_outputs):
+ loss = 0
+ r_losses = []
+ g_losses = []
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
+ r_loss = torch.mean((1 - dr) ** 2)
+ g_loss = torch.mean(dg**2)
+ loss += r_loss + g_loss
+ r_losses.append(r_loss.item())
+ g_losses.append(g_loss.item())
+
+ return loss, r_losses, g_losses
+
+
+def generator_loss(disc_outputs):
+ loss = 0
+ gen_losses = []
+ for dg in disc_outputs:
+ l = torch.mean((1 - dg) ** 2)
+ gen_losses.append(l)
+ loss += l
+
+ return loss, gen_losses
diff --git a/matcha/hifigan/xutils.py b/matcha/hifigan/xutils.py
new file mode 100644
index 0000000000000000000000000000000000000000..eefadcb7a1d0bf9015e636b88fee3e22c9771bc5
--- /dev/null
+++ b/matcha/hifigan/xutils.py
@@ -0,0 +1,60 @@
+""" from https://github.com/jik876/hifi-gan """
+
+import glob
+import os
+
+import matplotlib
+import torch
+from torch.nn.utils import weight_norm
+
+matplotlib.use("Agg")
+import matplotlib.pylab as plt
+
+
+def plot_spectrogram(spectrogram):
+ fig, ax = plt.subplots(figsize=(10, 2))
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
+ plt.colorbar(im, ax=ax)
+
+ fig.canvas.draw()
+ plt.close()
+
+ return fig
+
+
+def init_weights(m, mean=0.0, std=0.01):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ m.weight.data.normal_(mean, std)
+
+
+def apply_weight_norm(m):
+ classname = m.__class__.__name__
+ if classname.find("Conv") != -1:
+ weight_norm(m)
+
+
+def get_padding(kernel_size, dilation=1):
+ return int((kernel_size * dilation - dilation) / 2)
+
+
+def load_checkpoint(filepath, device):
+ assert os.path.isfile(filepath)
+ print(f"Loading '{filepath}'")
+ checkpoint_dict = torch.load(filepath, map_location=device)
+ print("Complete.")
+ return checkpoint_dict
+
+
+def save_checkpoint(filepath, obj):
+ print(f"Saving checkpoint to {filepath}")
+ torch.save(obj, filepath)
+ print("Complete.")
+
+
+def scan_checkpoint(cp_dir, prefix):
+ pattern = os.path.join(cp_dir, prefix + "????????")
+ cp_list = glob.glob(pattern)
+ if len(cp_list) == 0:
+ return None
+ return sorted(cp_list)[-1]
diff --git a/matcha/models/__init__.py b/matcha/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/matcha/models/baselightningmodule.py b/matcha/models/baselightningmodule.py
new file mode 100644
index 0000000000000000000000000000000000000000..3724888090e36b5f55445d33a87fcdae687b35a5
--- /dev/null
+++ b/matcha/models/baselightningmodule.py
@@ -0,0 +1,209 @@
+"""
+This is a base lightning module that can be used to train a model.
+The benefit of this abstraction is that all the logic outside of model definition can be reused for different models.
+"""
+import inspect
+from abc import ABC
+from typing import Any, Dict
+
+import torch
+from lightning import LightningModule
+from lightning.pytorch.utilities import grad_norm
+
+from matcha import utils
+from matcha.utils.utils import plot_tensor
+
+log = utils.get_pylogger(__name__)
+
+
+class BaseLightningClass(LightningModule, ABC):
+ def update_data_statistics(self, data_statistics):
+ if data_statistics is None:
+ data_statistics = {
+ "mel_mean": 0.0,
+ "mel_std": 1.0,
+ }
+
+ self.register_buffer("mel_mean", torch.tensor(data_statistics["mel_mean"]))
+ self.register_buffer("mel_std", torch.tensor(data_statistics["mel_std"]))
+
+ def configure_optimizers(self) -> Any:
+ optimizer = self.hparams.optimizer(params=self.parameters())
+ if self.hparams.scheduler not in (None, {}):
+ scheduler_args = {}
+ # Manage last epoch for exponential schedulers
+ if "last_epoch" in inspect.signature(self.hparams.scheduler.scheduler).parameters:
+ if hasattr(self, "ckpt_loaded_epoch"):
+ current_epoch = self.ckpt_loaded_epoch - 1
+ else:
+ current_epoch = -1
+
+ scheduler_args.update({"optimizer": optimizer})
+ scheduler = self.hparams.scheduler.scheduler(**scheduler_args)
+ scheduler.last_epoch = current_epoch
+ return {
+ "optimizer": optimizer,
+ "lr_scheduler": {
+ "scheduler": scheduler,
+ "interval": self.hparams.scheduler.lightning_args.interval,
+ "frequency": self.hparams.scheduler.lightning_args.frequency,
+ "name": "learning_rate",
+ },
+ }
+
+ return {"optimizer": optimizer}
+
+ def get_losses(self, batch):
+ x, x_lengths = batch["x"], batch["x_lengths"]
+ y, y_lengths = batch["y"], batch["y_lengths"]
+ spks = batch["spks"]
+
+ dur_loss, prior_loss, diff_loss = self(
+ x=x,
+ x_lengths=x_lengths,
+ y=y,
+ y_lengths=y_lengths,
+ spks=spks,
+ out_size=self.out_size,
+ )
+ return {
+ "dur_loss": dur_loss,
+ "prior_loss": prior_loss,
+ "diff_loss": diff_loss,
+ }
+
+ def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
+ self.ckpt_loaded_epoch = checkpoint["epoch"] # pylint: disable=attribute-defined-outside-init
+
+ def training_step(self, batch: Any, batch_idx: int):
+ loss_dict = self.get_losses(batch)
+ self.log(
+ "step",
+ float(self.global_step),
+ on_step=True,
+ prog_bar=True,
+ logger=True,
+ sync_dist=True,
+ )
+
+ self.log(
+ "sub_loss/train_dur_loss",
+ loss_dict["dur_loss"],
+ on_step=True,
+ on_epoch=True,
+ logger=True,
+ sync_dist=True,
+ )
+ self.log(
+ "sub_loss/train_prior_loss",
+ loss_dict["prior_loss"],
+ on_step=True,
+ on_epoch=True,
+ logger=True,
+ sync_dist=True,
+ )
+ self.log(
+ "sub_loss/train_diff_loss",
+ loss_dict["diff_loss"],
+ on_step=True,
+ on_epoch=True,
+ logger=True,
+ sync_dist=True,
+ )
+
+ total_loss = sum(loss_dict.values())
+ self.log(
+ "loss/train",
+ total_loss,
+ on_step=True,
+ on_epoch=True,
+ logger=True,
+ prog_bar=True,
+ sync_dist=True,
+ )
+
+ return {"loss": total_loss, "log": loss_dict}
+
+ def validation_step(self, batch: Any, batch_idx: int):
+ loss_dict = self.get_losses(batch)
+ self.log(
+ "sub_loss/val_dur_loss",
+ loss_dict["dur_loss"],
+ on_step=True,
+ on_epoch=True,
+ logger=True,
+ sync_dist=True,
+ )
+ self.log(
+ "sub_loss/val_prior_loss",
+ loss_dict["prior_loss"],
+ on_step=True,
+ on_epoch=True,
+ logger=True,
+ sync_dist=True,
+ )
+ self.log(
+ "sub_loss/val_diff_loss",
+ loss_dict["diff_loss"],
+ on_step=True,
+ on_epoch=True,
+ logger=True,
+ sync_dist=True,
+ )
+
+ total_loss = sum(loss_dict.values())
+ self.log(
+ "loss/val",
+ total_loss,
+ on_step=True,
+ on_epoch=True,
+ logger=True,
+ prog_bar=True,
+ sync_dist=True,
+ )
+
+ return total_loss
+
+ def on_validation_end(self) -> None:
+ if self.trainer.is_global_zero:
+ one_batch = next(iter(self.trainer.val_dataloaders))
+ if self.current_epoch == 0:
+ log.debug("Plotting original samples")
+ for i in range(2):
+ y = one_batch["y"][i].unsqueeze(0).to(self.device)
+ self.logger.experiment.add_image(
+ f"original/{i}",
+ plot_tensor(y.squeeze().cpu()),
+ self.current_epoch,
+ dataformats="HWC",
+ )
+
+ log.debug("Synthesising...")
+ for i in range(2):
+ x = one_batch["x"][i].unsqueeze(0).to(self.device)
+ x_lengths = one_batch["x_lengths"][i].unsqueeze(0).to(self.device)
+ spks = one_batch["spks"][i].unsqueeze(0).to(self.device) if one_batch["spks"] is not None else None
+ output = self.synthesise(x[:, :x_lengths], x_lengths, n_timesteps=10, spks=spks)
+ y_enc, y_dec = output["encoder_outputs"], output["decoder_outputs"]
+ attn = output["attn"]
+ self.logger.experiment.add_image(
+ f"generated_enc/{i}",
+ plot_tensor(y_enc.squeeze().cpu()),
+ self.current_epoch,
+ dataformats="HWC",
+ )
+ self.logger.experiment.add_image(
+ f"generated_dec/{i}",
+ plot_tensor(y_dec.squeeze().cpu()),
+ self.current_epoch,
+ dataformats="HWC",
+ )
+ self.logger.experiment.add_image(
+ f"alignment/{i}",
+ plot_tensor(attn.squeeze().cpu()),
+ self.current_epoch,
+ dataformats="HWC",
+ )
+
+ def on_before_optimizer_step(self, optimizer):
+ self.log_dict({f"grad_norm/{k}": v for k, v in grad_norm(self, norm_type=2).items()})
diff --git a/matcha/models/components/__init__.py b/matcha/models/components/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/matcha/models/components/decoder.py b/matcha/models/components/decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..1137cd7008e9d07b4f306926a82e44c2b2cddbdf
--- /dev/null
+++ b/matcha/models/components/decoder.py
@@ -0,0 +1,443 @@
+import math
+from typing import Optional
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from conformer import ConformerBlock
+from diffusers.models.activations import get_activation
+from einops import pack, rearrange, repeat
+
+from matcha.models.components.transformer import BasicTransformerBlock
+
+
+class SinusoidalPosEmb(torch.nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.dim = dim
+ assert self.dim % 2 == 0, "SinusoidalPosEmb requires dim to be even"
+
+ def forward(self, x, scale=1000):
+ if x.ndim < 1:
+ x = x.unsqueeze(0)
+ device = x.device
+ half_dim = self.dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
+ emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
+ emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
+ return emb
+
+
+class Block1D(torch.nn.Module):
+ def __init__(self, dim, dim_out, groups=8):
+ super().__init__()
+ self.block = torch.nn.Sequential(
+ torch.nn.Conv1d(dim, dim_out, 3, padding=1),
+ torch.nn.GroupNorm(groups, dim_out),
+ nn.Mish(),
+ )
+
+ def forward(self, x, mask):
+ output = self.block(x * mask)
+ return output * mask
+
+
+class ResnetBlock1D(torch.nn.Module):
+ def __init__(self, dim, dim_out, time_emb_dim, groups=8):
+ super().__init__()
+ self.mlp = torch.nn.Sequential(nn.Mish(), torch.nn.Linear(time_emb_dim, dim_out))
+
+ self.block1 = Block1D(dim, dim_out, groups=groups)
+ self.block2 = Block1D(dim_out, dim_out, groups=groups)
+
+ self.res_conv = torch.nn.Conv1d(dim, dim_out, 1)
+
+ def forward(self, x, mask, time_emb):
+ h = self.block1(x, mask)
+ h += self.mlp(time_emb).unsqueeze(-1)
+ h = self.block2(h, mask)
+ output = h + self.res_conv(x * mask)
+ return output
+
+
+class Downsample1D(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.conv = torch.nn.Conv1d(dim, dim, 3, 2, 1)
+
+ def forward(self, x):
+ return self.conv(x)
+
+
+class TimestepEmbedding(nn.Module):
+ def __init__(
+ self,
+ in_channels: int,
+ time_embed_dim: int,
+ act_fn: str = "silu",
+ out_dim: int = None,
+ post_act_fn: Optional[str] = None,
+ cond_proj_dim=None,
+ ):
+ super().__init__()
+
+ self.linear_1 = nn.Linear(in_channels, time_embed_dim)
+
+ if cond_proj_dim is not None:
+ self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
+ else:
+ self.cond_proj = None
+
+ self.act = get_activation(act_fn)
+
+ if out_dim is not None:
+ time_embed_dim_out = out_dim
+ else:
+ time_embed_dim_out = time_embed_dim
+ self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out)
+
+ if post_act_fn is None:
+ self.post_act = None
+ else:
+ self.post_act = get_activation(post_act_fn)
+
+ def forward(self, sample, condition=None):
+ if condition is not None:
+ sample = sample + self.cond_proj(condition)
+ sample = self.linear_1(sample)
+
+ if self.act is not None:
+ sample = self.act(sample)
+
+ sample = self.linear_2(sample)
+
+ if self.post_act is not None:
+ sample = self.post_act(sample)
+ return sample
+
+
+class Upsample1D(nn.Module):
+ """A 1D upsampling layer with an optional convolution.
+
+ Parameters:
+ channels (`int`):
+ number of channels in the inputs and outputs.
+ use_conv (`bool`, default `False`):
+ option to use a convolution.
+ use_conv_transpose (`bool`, default `False`):
+ option to use a convolution transpose.
+ out_channels (`int`, optional):
+ number of output channels. Defaults to `channels`.
+ """
+
+ def __init__(self, channels, use_conv=False, use_conv_transpose=True, out_channels=None, name="conv"):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_conv_transpose = use_conv_transpose
+ self.name = name
+
+ self.conv = None
+ if use_conv_transpose:
+ self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
+ elif use_conv:
+ self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)
+
+ def forward(self, inputs):
+ assert inputs.shape[1] == self.channels
+ if self.use_conv_transpose:
+ return self.conv(inputs)
+
+ outputs = F.interpolate(inputs, scale_factor=2.0, mode="nearest")
+
+ if self.use_conv:
+ outputs = self.conv(outputs)
+
+ return outputs
+
+
+class ConformerWrapper(ConformerBlock):
+ def __init__( # pylint: disable=useless-super-delegation
+ self,
+ *,
+ dim,
+ dim_head=64,
+ heads=8,
+ ff_mult=4,
+ conv_expansion_factor=2,
+ conv_kernel_size=31,
+ attn_dropout=0,
+ ff_dropout=0,
+ conv_dropout=0,
+ conv_causal=False,
+ ):
+ super().__init__(
+ dim=dim,
+ dim_head=dim_head,
+ heads=heads,
+ ff_mult=ff_mult,
+ conv_expansion_factor=conv_expansion_factor,
+ conv_kernel_size=conv_kernel_size,
+ attn_dropout=attn_dropout,
+ ff_dropout=ff_dropout,
+ conv_dropout=conv_dropout,
+ conv_causal=conv_causal,
+ )
+
+ def forward(
+ self,
+ hidden_states,
+ attention_mask,
+ encoder_hidden_states=None,
+ encoder_attention_mask=None,
+ timestep=None,
+ ):
+ return super().forward(x=hidden_states, mask=attention_mask.bool())
+
+
+class Decoder(nn.Module):
+ def __init__(
+ self,
+ in_channels,
+ out_channels,
+ channels=(256, 256),
+ dropout=0.05,
+ attention_head_dim=64,
+ n_blocks=1,
+ num_mid_blocks=2,
+ num_heads=4,
+ act_fn="snake",
+ down_block_type="transformer",
+ mid_block_type="transformer",
+ up_block_type="transformer",
+ ):
+ super().__init__()
+ channels = tuple(channels)
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+
+ self.time_embeddings = SinusoidalPosEmb(in_channels)
+ time_embed_dim = channels[0] * 4
+ self.time_mlp = TimestepEmbedding(
+ in_channels=in_channels,
+ time_embed_dim=time_embed_dim,
+ act_fn="silu",
+ )
+
+ self.down_blocks = nn.ModuleList([])
+ self.mid_blocks = nn.ModuleList([])
+ self.up_blocks = nn.ModuleList([])
+
+ output_channel = in_channels
+ for i in range(len(channels)): # pylint: disable=consider-using-enumerate
+ input_channel = output_channel
+ output_channel = channels[i]
+ is_last = i == len(channels) - 1
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+ transformer_blocks = nn.ModuleList(
+ [
+ self.get_block(
+ down_block_type,
+ output_channel,
+ attention_head_dim,
+ num_heads,
+ dropout,
+ act_fn,
+ )
+ for _ in range(n_blocks)
+ ]
+ )
+ downsample = (
+ Downsample1D(output_channel) if not is_last else nn.Conv1d(output_channel, output_channel, 3, padding=1)
+ )
+
+ self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
+
+ for i in range(num_mid_blocks):
+ input_channel = channels[-1]
+ out_channels = channels[-1]
+
+ resnet = ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
+
+ transformer_blocks = nn.ModuleList(
+ [
+ self.get_block(
+ mid_block_type,
+ output_channel,
+ attention_head_dim,
+ num_heads,
+ dropout,
+ act_fn,
+ )
+ for _ in range(n_blocks)
+ ]
+ )
+
+ self.mid_blocks.append(nn.ModuleList([resnet, transformer_blocks]))
+
+ channels = channels[::-1] + (channels[0],)
+ for i in range(len(channels) - 1):
+ input_channel = channels[i]
+ output_channel = channels[i + 1]
+ is_last = i == len(channels) - 2
+
+ resnet = ResnetBlock1D(
+ dim=2 * input_channel,
+ dim_out=output_channel,
+ time_emb_dim=time_embed_dim,
+ )
+ transformer_blocks = nn.ModuleList(
+ [
+ self.get_block(
+ up_block_type,
+ output_channel,
+ attention_head_dim,
+ num_heads,
+ dropout,
+ act_fn,
+ )
+ for _ in range(n_blocks)
+ ]
+ )
+ upsample = (
+ Upsample1D(output_channel, use_conv_transpose=True)
+ if not is_last
+ else nn.Conv1d(output_channel, output_channel, 3, padding=1)
+ )
+
+ self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
+
+ self.final_block = Block1D(channels[-1], channels[-1])
+ self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
+
+ self.initialize_weights()
+ # nn.init.normal_(self.final_proj.weight)
+
+ @staticmethod
+ def get_block(block_type, dim, attention_head_dim, num_heads, dropout, act_fn):
+ if block_type == "conformer":
+ block = ConformerWrapper(
+ dim=dim,
+ dim_head=attention_head_dim,
+ heads=num_heads,
+ ff_mult=1,
+ conv_expansion_factor=2,
+ ff_dropout=dropout,
+ attn_dropout=dropout,
+ conv_dropout=dropout,
+ conv_kernel_size=31,
+ )
+ elif block_type == "transformer":
+ block = BasicTransformerBlock(
+ dim=dim,
+ num_attention_heads=num_heads,
+ attention_head_dim=attention_head_dim,
+ dropout=dropout,
+ activation_fn=act_fn,
+ )
+ else:
+ raise ValueError(f"Unknown block type {block_type}")
+
+ return block
+
+ def initialize_weights(self):
+ for m in self.modules():
+ if isinstance(m, nn.Conv1d):
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
+
+ if m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+
+ elif isinstance(m, nn.GroupNorm):
+ nn.init.constant_(m.weight, 1)
+ nn.init.constant_(m.bias, 0)
+
+ elif isinstance(m, nn.Linear):
+ nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
+
+ if m.bias is not None:
+ nn.init.constant_(m.bias, 0)
+
+ def forward(self, x, mask, mu, t, spks=None, cond=None):
+ """Forward pass of the UNet1DConditional model.
+
+ Args:
+ x (torch.Tensor): shape (batch_size, in_channels, time)
+ mask (_type_): shape (batch_size, 1, time)
+ t (_type_): shape (batch_size)
+ spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
+ cond (_type_, optional): placeholder for future use. Defaults to None.
+
+ Raises:
+ ValueError: _description_
+ ValueError: _description_
+
+ Returns:
+ _type_: _description_
+ """
+
+ t = self.time_embeddings(t)
+ t = self.time_mlp(t)
+
+ x = pack([x, mu], "b * t")[0]
+
+ if spks is not None:
+ spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
+ x = pack([x, spks], "b * t")[0]
+
+ hiddens = []
+ masks = [mask]
+ for resnet, transformer_blocks, downsample in self.down_blocks:
+ mask_down = masks[-1]
+ x = resnet(x, mask_down, t)
+ x = rearrange(x, "b c t -> b t c")
+ mask_down = rearrange(mask_down, "b 1 t -> b t")
+ for transformer_block in transformer_blocks:
+ x = transformer_block(
+ hidden_states=x,
+ attention_mask=mask_down,
+ timestep=t,
+ )
+ x = rearrange(x, "b t c -> b c t")
+ mask_down = rearrange(mask_down, "b t -> b 1 t")
+ hiddens.append(x) # Save hidden states for skip connections
+ x = downsample(x * mask_down)
+ masks.append(mask_down[:, :, ::2])
+
+ masks = masks[:-1]
+ mask_mid = masks[-1]
+
+ for resnet, transformer_blocks in self.mid_blocks:
+ x = resnet(x, mask_mid, t)
+ x = rearrange(x, "b c t -> b t c")
+ mask_mid = rearrange(mask_mid, "b 1 t -> b t")
+ for transformer_block in transformer_blocks:
+ x = transformer_block(
+ hidden_states=x,
+ attention_mask=mask_mid,
+ timestep=t,
+ )
+ x = rearrange(x, "b t c -> b c t")
+ mask_mid = rearrange(mask_mid, "b t -> b 1 t")
+
+ for resnet, transformer_blocks, upsample in self.up_blocks:
+ mask_up = masks.pop()
+ x = resnet(pack([x, hiddens.pop()], "b * t")[0], mask_up, t)
+ x = rearrange(x, "b c t -> b t c")
+ mask_up = rearrange(mask_up, "b 1 t -> b t")
+ for transformer_block in transformer_blocks:
+ x = transformer_block(
+ hidden_states=x,
+ attention_mask=mask_up,
+ timestep=t,
+ )
+ x = rearrange(x, "b t c -> b c t")
+ mask_up = rearrange(mask_up, "b t -> b 1 t")
+ x = upsample(x * mask_up)
+
+ x = self.final_block(x, mask_up)
+ output = self.final_proj(x * mask_up)
+
+ return output * mask
diff --git a/matcha/models/components/flow_matching.py b/matcha/models/components/flow_matching.py
new file mode 100644
index 0000000000000000000000000000000000000000..5cad7431ef66a8d11da32a77c1af7f6e31d6b774
--- /dev/null
+++ b/matcha/models/components/flow_matching.py
@@ -0,0 +1,132 @@
+from abc import ABC
+
+import torch
+import torch.nn.functional as F
+
+from matcha.models.components.decoder import Decoder
+from matcha.utils.pylogger import get_pylogger
+
+log = get_pylogger(__name__)
+
+
+class BASECFM(torch.nn.Module, ABC):
+ def __init__(
+ self,
+ n_feats,
+ cfm_params,
+ n_spks=1,
+ spk_emb_dim=128,
+ ):
+ super().__init__()
+ self.n_feats = n_feats
+ self.n_spks = n_spks
+ self.spk_emb_dim = spk_emb_dim
+ self.solver = cfm_params.solver
+ if hasattr(cfm_params, "sigma_min"):
+ self.sigma_min = cfm_params.sigma_min
+ else:
+ self.sigma_min = 1e-4
+
+ self.estimator = None
+
+ @torch.inference_mode()
+ def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
+ """Forward diffusion
+
+ Args:
+ mu (torch.Tensor): output of encoder
+ shape: (batch_size, n_feats, mel_timesteps)
+ mask (torch.Tensor): output_mask
+ shape: (batch_size, 1, mel_timesteps)
+ n_timesteps (int): number of diffusion steps
+ temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
+ shape: (batch_size, spk_emb_dim)
+ cond: Not used but kept for future purposes
+
+ Returns:
+ sample: generated mel-spectrogram
+ shape: (batch_size, n_feats, mel_timesteps)
+ """
+ z = torch.randn_like(mu) * temperature
+ t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
+ return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
+
+ def solve_euler(self, x, t_span, mu, mask, spks, cond):
+ """
+ Fixed euler solver for ODEs.
+ Args:
+ x (torch.Tensor): random noise
+ t_span (torch.Tensor): n_timesteps interpolated
+ shape: (n_timesteps + 1,)
+ mu (torch.Tensor): output of encoder
+ shape: (batch_size, n_feats, mel_timesteps)
+ mask (torch.Tensor): output_mask
+ shape: (batch_size, 1, mel_timesteps)
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
+ shape: (batch_size, spk_emb_dim)
+ cond: Not used but kept for future purposes
+ """
+ t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
+
+ # I am storing this because I can later plot it by putting a debugger here and saving it to a file
+ # Or in future might add like a return_all_steps flag
+ sol = []
+
+ for step in range(1, len(t_span)):
+ dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
+
+ x = x + dt * dphi_dt
+ t = t + dt
+ sol.append(x)
+ if step < len(t_span) - 1:
+ dt = t_span[step + 1] - t
+
+ return sol[-1]
+
+ def compute_loss(self, x1, mask, mu, spks=None, cond=None):
+ """Computes diffusion loss
+
+ Args:
+ x1 (torch.Tensor): Target
+ shape: (batch_size, n_feats, mel_timesteps)
+ mask (torch.Tensor): target mask
+ shape: (batch_size, 1, mel_timesteps)
+ mu (torch.Tensor): output of encoder
+ shape: (batch_size, n_feats, mel_timesteps)
+ spks (torch.Tensor, optional): speaker embedding. Defaults to None.
+ shape: (batch_size, spk_emb_dim)
+
+ Returns:
+ loss: conditional flow matching loss
+ y: conditional flow
+ shape: (batch_size, n_feats, mel_timesteps)
+ """
+ b, _, t = mu.shape
+
+ # random timestep
+ t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype)
+ # sample noise p(x_0)
+ z = torch.randn_like(x1)
+
+ y = (1 - (1 - self.sigma_min) * t) * z + t * x1
+ u = x1 - (1 - self.sigma_min) * z
+
+ loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / (
+ torch.sum(mask) * u.shape[1]
+ )
+ return loss, y
+
+
+class CFM(BASECFM):
+ def __init__(self, in_channels, out_channel, cfm_params, decoder_params, n_spks=1, spk_emb_dim=64):
+ super().__init__(
+ n_feats=in_channels,
+ cfm_params=cfm_params,
+ n_spks=n_spks,
+ spk_emb_dim=spk_emb_dim,
+ )
+
+ in_channels = in_channels + (spk_emb_dim if n_spks > 1 else 0)
+ # Just change the architecture of the estimator here
+ self.estimator = Decoder(in_channels=in_channels, out_channels=out_channel, **decoder_params)
diff --git a/matcha/models/components/text_encoder.py b/matcha/models/components/text_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..a388d05d6351fa2c9d9632fed0942d51fbec067b
--- /dev/null
+++ b/matcha/models/components/text_encoder.py
@@ -0,0 +1,410 @@
+""" from https://github.com/jaywalnut310/glow-tts """
+
+import math
+
+import torch
+import torch.nn as nn
+from einops import rearrange
+
+import matcha.utils as utils
+from matcha.utils.model import sequence_mask
+
+log = utils.get_pylogger(__name__)
+
+
+class LayerNorm(nn.Module):
+ def __init__(self, channels, eps=1e-4):
+ super().__init__()
+ self.channels = channels
+ self.eps = eps
+
+ self.gamma = torch.nn.Parameter(torch.ones(channels))
+ self.beta = torch.nn.Parameter(torch.zeros(channels))
+
+ def forward(self, x):
+ n_dims = len(x.shape)
+ mean = torch.mean(x, 1, keepdim=True)
+ variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
+
+ x = (x - mean) * torch.rsqrt(variance + self.eps)
+
+ shape = [1, -1] + [1] * (n_dims - 2)
+ x = x * self.gamma.view(*shape) + self.beta.view(*shape)
+ return x
+
+
+class ConvReluNorm(nn.Module):
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
+ super().__init__()
+ self.in_channels = in_channels
+ self.hidden_channels = hidden_channels
+ self.out_channels = out_channels
+ self.kernel_size = kernel_size
+ self.n_layers = n_layers
+ self.p_dropout = p_dropout
+
+ self.conv_layers = torch.nn.ModuleList()
+ self.norm_layers = torch.nn.ModuleList()
+ self.conv_layers.append(torch.nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.relu_drop = torch.nn.Sequential(torch.nn.ReLU(), torch.nn.Dropout(p_dropout))
+ for _ in range(n_layers - 1):
+ self.conv_layers.append(
+ torch.nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2)
+ )
+ self.norm_layers.append(LayerNorm(hidden_channels))
+ self.proj = torch.nn.Conv1d(hidden_channels, out_channels, 1)
+ self.proj.weight.data.zero_()
+ self.proj.bias.data.zero_()
+
+ def forward(self, x, x_mask):
+ x_org = x
+ for i in range(self.n_layers):
+ x = self.conv_layers[i](x * x_mask)
+ x = self.norm_layers[i](x)
+ x = self.relu_drop(x)
+ x = x_org + self.proj(x)
+ return x * x_mask
+
+
+class DurationPredictor(nn.Module):
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout):
+ super().__init__()
+ self.in_channels = in_channels
+ self.filter_channels = filter_channels
+ self.p_dropout = p_dropout
+
+ self.drop = torch.nn.Dropout(p_dropout)
+ self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
+ self.norm_1 = LayerNorm(filter_channels)
+ self.conv_2 = torch.nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
+ self.norm_2 = LayerNorm(filter_channels)
+ self.proj = torch.nn.Conv1d(filter_channels, 1, 1)
+
+ def forward(self, x, x_mask):
+ x = self.conv_1(x * x_mask)
+ x = torch.relu(x)
+ x = self.norm_1(x)
+ x = self.drop(x)
+ x = self.conv_2(x * x_mask)
+ x = torch.relu(x)
+ x = self.norm_2(x)
+ x = self.drop(x)
+ x = self.proj(x * x_mask)
+ return x * x_mask
+
+
+class RotaryPositionalEmbeddings(nn.Module):
+ """
+ ## RoPE module
+
+ Rotary encoding transforms pairs of features by rotating in the 2D plane.
+ That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
+ Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
+ by an angle depending on the position of the token.
+ """
+
+ def __init__(self, d: int, base: int = 10_000):
+ r"""
+ * `d` is the number of features $d$
+ * `base` is the constant used for calculating $\Theta$
+ """
+ super().__init__()
+
+ self.base = base
+ self.d = int(d)
+ self.cos_cached = None
+ self.sin_cached = None
+
+ def _build_cache(self, x: torch.Tensor):
+ r"""
+ Cache $\cos$ and $\sin$ values
+ """
+ # Return if cache is already built
+ if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
+ return
+
+ # Get sequence length
+ seq_len = x.shape[0]
+
+ # $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
+ theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)
+
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
+ seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
+
+ # Calculate the product of position index and $\theta_i$
+ idx_theta = torch.einsum("n,d->nd", seq_idx, theta)
+
+ # Concatenate so that for row $m$ we have
+ # $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
+ idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)
+
+ # Cache them
+ self.cos_cached = idx_theta2.cos()[:, None, None, :]
+ self.sin_cached = idx_theta2.sin()[:, None, None, :]
+
+ def _neg_half(self, x: torch.Tensor):
+ # $\frac{d}{2}$
+ d_2 = self.d // 2
+
+ # Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
+ return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
+
+ def forward(self, x: torch.Tensor):
+ """
+ * `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
+ """
+ # Cache $\cos$ and $\sin$ values
+ x = rearrange(x, "b h t d -> t b h d")
+
+ self._build_cache(x)
+
+ # Split the features, we can choose to apply rotary embeddings only to a partial set of features.
+ x_rope, x_pass = x[..., : self.d], x[..., self.d :]
+
+ # Calculate
+ # $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
+ neg_half_x = self._neg_half(x_rope)
+
+ x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])
+
+ return rearrange(torch.cat((x_rope, x_pass), dim=-1), "t b h d -> b h t d")
+
+
+class MultiHeadAttention(nn.Module):
+ def __init__(
+ self,
+ channels,
+ out_channels,
+ n_heads,
+ heads_share=True,
+ p_dropout=0.0,
+ proximal_bias=False,
+ proximal_init=False,
+ ):
+ super().__init__()
+ assert channels % n_heads == 0
+
+ self.channels = channels
+ self.out_channels = out_channels
+ self.n_heads = n_heads
+ self.heads_share = heads_share
+ self.proximal_bias = proximal_bias
+ self.p_dropout = p_dropout
+ self.attn = None
+
+ self.k_channels = channels // n_heads
+ self.conv_q = torch.nn.Conv1d(channels, channels, 1)
+ self.conv_k = torch.nn.Conv1d(channels, channels, 1)
+ self.conv_v = torch.nn.Conv1d(channels, channels, 1)
+
+ # from https://nn.labml.ai/transformers/rope/index.html
+ self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
+ self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
+
+ self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
+ self.drop = torch.nn.Dropout(p_dropout)
+
+ torch.nn.init.xavier_uniform_(self.conv_q.weight)
+ torch.nn.init.xavier_uniform_(self.conv_k.weight)
+ if proximal_init:
+ self.conv_k.weight.data.copy_(self.conv_q.weight.data)
+ self.conv_k.bias.data.copy_(self.conv_q.bias.data)
+ torch.nn.init.xavier_uniform_(self.conv_v.weight)
+
+ def forward(self, x, c, attn_mask=None):
+ q = self.conv_q(x)
+ k = self.conv_k(c)
+ v = self.conv_v(c)
+
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
+
+ x = self.conv_o(x)
+ return x
+
+ def attention(self, query, key, value, mask=None):
+ b, d, t_s, t_t = (*key.size(), query.size(2))
+ query = rearrange(query, "b (h c) t-> b h t c", h=self.n_heads)
+ key = rearrange(key, "b (h c) t-> b h t c", h=self.n_heads)
+ value = rearrange(value, "b (h c) t-> b h t c", h=self.n_heads)
+
+ query = self.query_rotary_pe(query)
+ key = self.key_rotary_pe(key)
+
+ scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.k_channels)
+
+ if self.proximal_bias:
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
+ if mask is not None:
+ scores = scores.masked_fill(mask == 0, -1e4)
+ p_attn = torch.nn.functional.softmax(scores, dim=-1)
+ p_attn = self.drop(p_attn)
+ output = torch.matmul(p_attn, value)
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t)
+ return output, p_attn
+
+ @staticmethod
+ def _attention_bias_proximal(length):
+ r = torch.arange(length, dtype=torch.float32)
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
+
+
+class FFN(nn.Module):
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0):
+ super().__init__()
+ self.in_channels = in_channels
+ self.out_channels = out_channels
+ self.filter_channels = filter_channels
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+
+ self.conv_1 = torch.nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
+ self.conv_2 = torch.nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
+ self.drop = torch.nn.Dropout(p_dropout)
+
+ def forward(self, x, x_mask):
+ x = self.conv_1(x * x_mask)
+ x = torch.relu(x)
+ x = self.drop(x)
+ x = self.conv_2(x * x_mask)
+ return x * x_mask
+
+
+class Encoder(nn.Module):
+ def __init__(
+ self,
+ hidden_channels,
+ filter_channels,
+ n_heads,
+ n_layers,
+ kernel_size=1,
+ p_dropout=0.0,
+ **kwargs,
+ ):
+ super().__init__()
+ self.hidden_channels = hidden_channels
+ self.filter_channels = filter_channels
+ self.n_heads = n_heads
+ self.n_layers = n_layers
+ self.kernel_size = kernel_size
+ self.p_dropout = p_dropout
+
+ self.drop = torch.nn.Dropout(p_dropout)
+ self.attn_layers = torch.nn.ModuleList()
+ self.norm_layers_1 = torch.nn.ModuleList()
+ self.ffn_layers = torch.nn.ModuleList()
+ self.norm_layers_2 = torch.nn.ModuleList()
+ for _ in range(self.n_layers):
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
+ self.ffn_layers.append(
+ FFN(
+ hidden_channels,
+ hidden_channels,
+ filter_channels,
+ kernel_size,
+ p_dropout=p_dropout,
+ )
+ )
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
+
+ def forward(self, x, x_mask):
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
+ for i in range(self.n_layers):
+ x = x * x_mask
+ y = self.attn_layers[i](x, x, attn_mask)
+ y = self.drop(y)
+ x = self.norm_layers_1[i](x + y)
+ y = self.ffn_layers[i](x, x_mask)
+ y = self.drop(y)
+ x = self.norm_layers_2[i](x + y)
+ x = x * x_mask
+ return x
+
+
+class TextEncoder(nn.Module):
+ def __init__(
+ self,
+ encoder_type,
+ encoder_params,
+ duration_predictor_params,
+ n_vocab,
+ n_spks=1,
+ spk_emb_dim=128,
+ ):
+ super().__init__()
+ self.encoder_type = encoder_type
+ self.n_vocab = n_vocab
+ self.n_feats = encoder_params.n_feats
+ self.n_channels = encoder_params.n_channels
+ self.spk_emb_dim = spk_emb_dim
+ self.n_spks = n_spks
+
+ self.emb = torch.nn.Embedding(n_vocab, self.n_channels)
+ torch.nn.init.normal_(self.emb.weight, 0.0, self.n_channels**-0.5)
+
+ if encoder_params.prenet:
+ self.prenet = ConvReluNorm(
+ self.n_channels,
+ self.n_channels,
+ self.n_channels,
+ kernel_size=5,
+ n_layers=3,
+ p_dropout=0.5,
+ )
+ else:
+ self.prenet = lambda x, x_mask: x
+
+ self.encoder = Encoder(
+ encoder_params.n_channels + (spk_emb_dim if n_spks > 1 else 0),
+ encoder_params.filter_channels,
+ encoder_params.n_heads,
+ encoder_params.n_layers,
+ encoder_params.kernel_size,
+ encoder_params.p_dropout,
+ )
+
+ self.proj_m = torch.nn.Conv1d(self.n_channels + (spk_emb_dim if n_spks > 1 else 0), self.n_feats, 1)
+ self.proj_w = DurationPredictor(
+ self.n_channels + (spk_emb_dim if n_spks > 1 else 0),
+ duration_predictor_params.filter_channels_dp,
+ duration_predictor_params.kernel_size,
+ duration_predictor_params.p_dropout,
+ )
+
+ def forward(self, x, x_lengths, spks=None):
+ """Run forward pass to the transformer based encoder and duration predictor
+
+ Args:
+ x (torch.Tensor): text input
+ shape: (batch_size, max_text_length)
+ x_lengths (torch.Tensor): text input lengths
+ shape: (batch_size,)
+ spks (torch.Tensor, optional): speaker ids. Defaults to None.
+ shape: (batch_size,)
+
+ Returns:
+ mu (torch.Tensor): average output of the encoder
+ shape: (batch_size, n_feats, max_text_length)
+ logw (torch.Tensor): log duration predicted by the duration predictor
+ shape: (batch_size, 1, max_text_length)
+ x_mask (torch.Tensor): mask for the text input
+ shape: (batch_size, 1, max_text_length)
+ """
+ x = self.emb(x) * math.sqrt(self.n_channels)
+ x = torch.transpose(x, 1, -1)
+ x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
+
+ x = self.prenet(x, x_mask)
+ if self.n_spks > 1:
+ x = torch.cat([x, spks.unsqueeze(-1).repeat(1, 1, x.shape[-1])], dim=1)
+ x = self.encoder(x, x_mask)
+ mu = self.proj_m(x) * x_mask
+
+ x_dp = torch.detach(x)
+ logw = self.proj_w(x_dp, x_mask)
+
+ return mu, logw, x_mask
diff --git a/matcha/models/components/transformer.py b/matcha/models/components/transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd1afa3aff5383912209e508676c6885e13ef4ee
--- /dev/null
+++ b/matcha/models/components/transformer.py
@@ -0,0 +1,316 @@
+from typing import Any, Dict, Optional
+
+import torch
+import torch.nn as nn
+from diffusers.models.attention import (
+ GEGLU,
+ GELU,
+ AdaLayerNorm,
+ AdaLayerNormZero,
+ ApproximateGELU,
+)
+from diffusers.models.attention_processor import Attention
+from diffusers.models.lora import LoRACompatibleLinear
+from diffusers.utils.torch_utils import maybe_allow_in_graph
+
+
+class SnakeBeta(nn.Module):
+ """
+ A modified Snake function which uses separate parameters for the magnitude of the periodic components
+ Shape:
+ - Input: (B, C, T)
+ - Output: (B, C, T), same shape as the input
+ Parameters:
+ - alpha - trainable parameter that controls frequency
+ - beta - trainable parameter that controls magnitude
+ References:
+ - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
+ https://arxiv.org/abs/2006.08195
+ Examples:
+ >>> a1 = snakebeta(256)
+ >>> x = torch.randn(256)
+ >>> x = a1(x)
+ """
+
+ def __init__(self, in_features, out_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
+ """
+ Initialization.
+ INPUT:
+ - in_features: shape of the input
+ - alpha - trainable parameter that controls frequency
+ - beta - trainable parameter that controls magnitude
+ alpha is initialized to 1 by default, higher values = higher-frequency.
+ beta is initialized to 1 by default, higher values = higher-magnitude.
+ alpha will be trained along with the rest of your model.
+ """
+ super().__init__()
+ self.in_features = out_features if isinstance(out_features, list) else [out_features]
+ self.proj = LoRACompatibleLinear(in_features, out_features)
+
+ # initialize alpha
+ self.alpha_logscale = alpha_logscale
+ if self.alpha_logscale: # log scale alphas initialized to zeros
+ self.alpha = nn.Parameter(torch.zeros(self.in_features) * alpha)
+ self.beta = nn.Parameter(torch.zeros(self.in_features) * alpha)
+ else: # linear scale alphas initialized to ones
+ self.alpha = nn.Parameter(torch.ones(self.in_features) * alpha)
+ self.beta = nn.Parameter(torch.ones(self.in_features) * alpha)
+
+ self.alpha.requires_grad = alpha_trainable
+ self.beta.requires_grad = alpha_trainable
+
+ self.no_div_by_zero = 0.000000001
+
+ def forward(self, x):
+ """
+ Forward pass of the function.
+ Applies the function to the input elementwise.
+ SnakeBeta ∶= x + 1/b * sin^2 (xa)
+ """
+ x = self.proj(x)
+ if self.alpha_logscale:
+ alpha = torch.exp(self.alpha)
+ beta = torch.exp(self.beta)
+ else:
+ alpha = self.alpha
+ beta = self.beta
+
+ x = x + (1.0 / (beta + self.no_div_by_zero)) * torch.pow(torch.sin(x * alpha), 2)
+
+ return x
+
+
+class FeedForward(nn.Module):
+ r"""
+ A feed-forward layer.
+
+ Parameters:
+ dim (`int`): The number of channels in the input.
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ dim_out: Optional[int] = None,
+ mult: int = 4,
+ dropout: float = 0.0,
+ activation_fn: str = "geglu",
+ final_dropout: bool = False,
+ ):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = dim_out if dim_out is not None else dim
+
+ if activation_fn == "gelu":
+ act_fn = GELU(dim, inner_dim)
+ if activation_fn == "gelu-approximate":
+ act_fn = GELU(dim, inner_dim, approximate="tanh")
+ elif activation_fn == "geglu":
+ act_fn = GEGLU(dim, inner_dim)
+ elif activation_fn == "geglu-approximate":
+ act_fn = ApproximateGELU(dim, inner_dim)
+ elif activation_fn == "snakebeta":
+ act_fn = SnakeBeta(dim, inner_dim)
+
+ self.net = nn.ModuleList([])
+ # project in
+ self.net.append(act_fn)
+ # project dropout
+ self.net.append(nn.Dropout(dropout))
+ # project out
+ self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
+ # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
+ if final_dropout:
+ self.net.append(nn.Dropout(dropout))
+
+ def forward(self, hidden_states):
+ for module in self.net:
+ hidden_states = module(hidden_states)
+ return hidden_states
+
+
+@maybe_allow_in_graph
+class BasicTransformerBlock(nn.Module):
+ r"""
+ A basic Transformer block.
+
+ Parameters:
+ dim (`int`): The number of channels in the input and output.
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
+ attention_head_dim (`int`): The number of channels in each head.
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
+ only_cross_attention (`bool`, *optional*):
+ Whether to use only cross-attention layers. In this case two cross attention layers are used.
+ double_self_attention (`bool`, *optional*):
+ Whether to use two self-attention layers. In this case no cross attention layers are used.
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
+ num_embeds_ada_norm (:
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
+ attention_bias (:
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
+ """
+
+ def __init__(
+ self,
+ dim: int,
+ num_attention_heads: int,
+ attention_head_dim: int,
+ dropout=0.0,
+ cross_attention_dim: Optional[int] = None,
+ activation_fn: str = "geglu",
+ num_embeds_ada_norm: Optional[int] = None,
+ attention_bias: bool = False,
+ only_cross_attention: bool = False,
+ double_self_attention: bool = False,
+ upcast_attention: bool = False,
+ norm_elementwise_affine: bool = True,
+ norm_type: str = "layer_norm",
+ final_dropout: bool = False,
+ ):
+ super().__init__()
+ self.only_cross_attention = only_cross_attention
+
+ self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
+ self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
+
+ if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
+ raise ValueError(
+ f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
+ f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
+ )
+
+ # Define 3 blocks. Each block has its own normalization layer.
+ # 1. Self-Attn
+ if self.use_ada_layer_norm:
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
+ elif self.use_ada_layer_norm_zero:
+ self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
+ else:
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
+ self.attn1 = Attention(
+ query_dim=dim,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
+ upcast_attention=upcast_attention,
+ )
+
+ # 2. Cross-Attn
+ if cross_attention_dim is not None or double_self_attention:
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
+ # the second cross attention block.
+ self.norm2 = (
+ AdaLayerNorm(dim, num_embeds_ada_norm)
+ if self.use_ada_layer_norm
+ else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
+ )
+ self.attn2 = Attention(
+ query_dim=dim,
+ cross_attention_dim=cross_attention_dim if not double_self_attention else None,
+ heads=num_attention_heads,
+ dim_head=attention_head_dim,
+ dropout=dropout,
+ bias=attention_bias,
+ upcast_attention=upcast_attention,
+ # scale_qk=False, # uncomment this to not to use flash attention
+ ) # is self-attn if encoder_hidden_states is none
+ else:
+ self.norm2 = None
+ self.attn2 = None
+
+ # 3. Feed-forward
+ self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
+ self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
+
+ # let chunk size default to None
+ self._chunk_size = None
+ self._chunk_dim = 0
+
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
+ # Sets chunk feed-forward
+ self._chunk_size = chunk_size
+ self._chunk_dim = dim
+
+ def forward(
+ self,
+ hidden_states: torch.FloatTensor,
+ attention_mask: Optional[torch.FloatTensor] = None,
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
+ timestep: Optional[torch.LongTensor] = None,
+ cross_attention_kwargs: Dict[str, Any] = None,
+ class_labels: Optional[torch.LongTensor] = None,
+ ):
+ # Notice that normalization is always applied before the real computation in the following blocks.
+ # 1. Self-Attention
+ if self.use_ada_layer_norm:
+ norm_hidden_states = self.norm1(hidden_states, timestep)
+ elif self.use_ada_layer_norm_zero:
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
+ )
+ else:
+ norm_hidden_states = self.norm1(hidden_states)
+
+ cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
+
+ attn_output = self.attn1(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
+ attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
+ **cross_attention_kwargs,
+ )
+ if self.use_ada_layer_norm_zero:
+ attn_output = gate_msa.unsqueeze(1) * attn_output
+ hidden_states = attn_output + hidden_states
+
+ # 2. Cross-Attention
+ if self.attn2 is not None:
+ norm_hidden_states = (
+ self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
+ )
+
+ attn_output = self.attn2(
+ norm_hidden_states,
+ encoder_hidden_states=encoder_hidden_states,
+ attention_mask=encoder_attention_mask,
+ **cross_attention_kwargs,
+ )
+ hidden_states = attn_output + hidden_states
+
+ # 3. Feed-forward
+ norm_hidden_states = self.norm3(hidden_states)
+
+ if self.use_ada_layer_norm_zero:
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
+
+ if self._chunk_size is not None:
+ # "feed_forward_chunk_size" can be used to save memory
+ if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
+ raise ValueError(
+ f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
+ )
+
+ num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
+ ff_output = torch.cat(
+ [self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
+ dim=self._chunk_dim,
+ )
+ else:
+ ff_output = self.ff(norm_hidden_states)
+
+ if self.use_ada_layer_norm_zero:
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
+
+ hidden_states = ff_output + hidden_states
+
+ return hidden_states
diff --git a/matcha/models/matcha_tts.py b/matcha/models/matcha_tts.py
new file mode 100644
index 0000000000000000000000000000000000000000..64b2c07fe8de4760aee1aed80d206112d30df55f
--- /dev/null
+++ b/matcha/models/matcha_tts.py
@@ -0,0 +1,239 @@
+import datetime as dt
+import math
+import random
+
+import torch
+
+import matcha.utils.monotonic_align as monotonic_align
+from matcha import utils
+from matcha.models.baselightningmodule import BaseLightningClass
+from matcha.models.components.flow_matching import CFM
+from matcha.models.components.text_encoder import TextEncoder
+from matcha.utils.model import (
+ denormalize,
+ duration_loss,
+ fix_len_compatibility,
+ generate_path,
+ sequence_mask,
+)
+
+log = utils.get_pylogger(__name__)
+
+
+class MatchaTTS(BaseLightningClass): # 🍵
+ def __init__(
+ self,
+ n_vocab,
+ n_spks,
+ spk_emb_dim,
+ n_feats,
+ encoder,
+ decoder,
+ cfm,
+ data_statistics,
+ out_size,
+ optimizer=None,
+ scheduler=None,
+ prior_loss=True,
+ ):
+ super().__init__()
+
+ self.save_hyperparameters(logger=False)
+
+ self.n_vocab = n_vocab
+ self.n_spks = n_spks
+ self.spk_emb_dim = spk_emb_dim
+ self.n_feats = n_feats
+ self.out_size = out_size
+ self.prior_loss = prior_loss
+
+ if n_spks > 1:
+ self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
+
+ self.encoder = TextEncoder(
+ encoder.encoder_type,
+ encoder.encoder_params,
+ encoder.duration_predictor_params,
+ n_vocab,
+ n_spks,
+ spk_emb_dim,
+ )
+
+ self.decoder = CFM(
+ in_channels=2 * encoder.encoder_params.n_feats,
+ out_channel=encoder.encoder_params.n_feats,
+ cfm_params=cfm,
+ decoder_params=decoder,
+ n_spks=n_spks,
+ spk_emb_dim=spk_emb_dim,
+ )
+
+ self.update_data_statistics(data_statistics)
+
+ @torch.inference_mode()
+ def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, spks=None, length_scale=1.0):
+ """
+ Generates mel-spectrogram from text. Returns:
+ 1. encoder outputs
+ 2. decoder outputs
+ 3. generated alignment
+
+ Args:
+ x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
+ shape: (batch_size, max_text_length)
+ x_lengths (torch.Tensor): lengths of texts in batch.
+ shape: (batch_size,)
+ n_timesteps (int): number of steps to use for reverse diffusion in decoder.
+ temperature (float, optional): controls variance of terminal distribution.
+ spks (bool, optional): speaker ids.
+ shape: (batch_size,)
+ length_scale (float, optional): controls speech pace.
+ Increase value to slow down generated speech and vice versa.
+
+ Returns:
+ dict: {
+ "encoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
+ # Average mel spectrogram generated by the encoder
+ "decoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
+ # Refined mel spectrogram improved by the CFM
+ "attn": torch.Tensor, shape: (batch_size, max_text_length, max_mel_length),
+ # Alignment map between text and mel spectrogram
+ "mel": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
+ # Denormalized mel spectrogram
+ "mel_lengths": torch.Tensor, shape: (batch_size,),
+ # Lengths of mel spectrograms
+ "rtf": float,
+ # Real-time factor
+ """
+ # For RTF computation
+ t = dt.datetime.now()
+
+ if self.n_spks > 1:
+ # Get speaker embedding
+ spks = self.spk_emb(spks.long())
+
+ # Get encoder_outputs `mu_x` and log-scaled token durations `logw`
+ mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
+
+ w = torch.exp(logw) * x_mask
+ w_ceil = torch.ceil(w) * length_scale
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
+ y_max_length = y_lengths.max()
+ y_max_length_ = fix_len_compatibility(y_max_length)
+
+ # Using obtained durations `w` construct alignment map `attn`
+ y_mask = sequence_mask(y_lengths, y_max_length_).unsqueeze(1).to(x_mask.dtype)
+ attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
+ attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
+
+ # Align encoded text and get mu_y
+ mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
+ mu_y = mu_y.transpose(1, 2)
+ encoder_outputs = mu_y[:, :, :y_max_length]
+
+ # Generate sample tracing the probability flow
+ decoder_outputs = self.decoder(mu_y, y_mask, n_timesteps, temperature, spks)
+ decoder_outputs = decoder_outputs[:, :, :y_max_length]
+
+ t = (dt.datetime.now() - t).total_seconds()
+ rtf = t * 22050 / (decoder_outputs.shape[-1] * 256)
+
+ return {
+ "encoder_outputs": encoder_outputs,
+ "decoder_outputs": decoder_outputs,
+ "attn": attn[:, :, :y_max_length],
+ "mel": denormalize(decoder_outputs, self.mel_mean, self.mel_std),
+ "mel_lengths": y_lengths,
+ "rtf": rtf,
+ }
+
+ def forward(self, x, x_lengths, y, y_lengths, spks=None, out_size=None, cond=None):
+ """
+ Computes 3 losses:
+ 1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
+ 2. prior loss: loss between mel-spectrogram and encoder outputs.
+ 3. flow matching loss: loss between mel-spectrogram and decoder outputs.
+
+ Args:
+ x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
+ shape: (batch_size, max_text_length)
+ x_lengths (torch.Tensor): lengths of texts in batch.
+ shape: (batch_size,)
+ y (torch.Tensor): batch of corresponding mel-spectrograms.
+ shape: (batch_size, n_feats, max_mel_length)
+ y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
+ shape: (batch_size,)
+ out_size (int, optional): length (in mel's sampling rate) of segment to cut, on which decoder will be trained.
+ Should be divisible by 2^{num of UNet downsamplings}. Needed to increase batch size.
+ spks (torch.Tensor, optional): speaker ids.
+ shape: (batch_size,)
+ """
+ if self.n_spks > 1:
+ # Get speaker embedding
+ spks = self.spk_emb(spks)
+
+ # Get encoder_outputs `mu_x` and log-scaled token durations `logw`
+ mu_x, logw, x_mask = self.encoder(x, x_lengths, spks)
+ y_max_length = y.shape[-1]
+
+ y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask)
+ attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
+
+ # Use MAS to find most likely alignment `attn` between text and mel-spectrogram
+ with torch.no_grad():
+ const = -0.5 * math.log(2 * math.pi) * self.n_feats
+ factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
+ y_square = torch.matmul(factor.transpose(1, 2), y**2)
+ y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
+ mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
+ log_prior = y_square - y_mu_double + mu_square + const
+
+ attn = monotonic_align.maximum_path(log_prior, attn_mask.squeeze(1))
+ attn = attn.detach()
+
+ # Compute loss between predicted log-scaled durations and those obtained from MAS
+ # refered to as prior loss in the paper
+ logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
+ dur_loss = duration_loss(logw, logw_, x_lengths)
+
+ # Cut a small segment of mel-spectrogram in order to increase batch size
+ # - "Hack" taken from Grad-TTS, in case of Grad-TTS, we cannot train batch size 32 on a 24GB GPU without it
+ # - Do not need this hack for Matcha-TTS, but it works with it as well
+ if not isinstance(out_size, type(None)):
+ max_offset = (y_lengths - out_size).clamp(0)
+ offset_ranges = list(zip([0] * max_offset.shape[0], max_offset.cpu().numpy()))
+ out_offset = torch.LongTensor(
+ [torch.tensor(random.choice(range(start, end)) if end > start else 0) for start, end in offset_ranges]
+ ).to(y_lengths)
+ attn_cut = torch.zeros(attn.shape[0], attn.shape[1], out_size, dtype=attn.dtype, device=attn.device)
+ y_cut = torch.zeros(y.shape[0], self.n_feats, out_size, dtype=y.dtype, device=y.device)
+
+ y_cut_lengths = []
+ for i, (y_, out_offset_) in enumerate(zip(y, out_offset)):
+ y_cut_length = out_size + (y_lengths[i] - out_size).clamp(None, 0)
+ y_cut_lengths.append(y_cut_length)
+ cut_lower, cut_upper = out_offset_, out_offset_ + y_cut_length
+ y_cut[i, :, :y_cut_length] = y_[:, cut_lower:cut_upper]
+ attn_cut[i, :, :y_cut_length] = attn[i, :, cut_lower:cut_upper]
+
+ y_cut_lengths = torch.LongTensor(y_cut_lengths)
+ y_cut_mask = sequence_mask(y_cut_lengths).unsqueeze(1).to(y_mask)
+
+ attn = attn_cut
+ y = y_cut
+ y_mask = y_cut_mask
+
+ # Align encoded text with mel-spectrogram and get mu_y segment
+ mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
+ mu_y = mu_y.transpose(1, 2)
+
+ # Compute loss of the decoder
+ diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
+
+ if self.prior_loss:
+ prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
+ prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
+ else:
+ prior_loss = 0
+
+ return dur_loss, prior_loss, diff_loss
diff --git a/matcha/onnx/__init__.py b/matcha/onnx/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/matcha/onnx/export.py b/matcha/onnx/export.py
new file mode 100644
index 0000000000000000000000000000000000000000..9b795086158e1ad8a4bb5cd92306f3fa765f71ea
--- /dev/null
+++ b/matcha/onnx/export.py
@@ -0,0 +1,181 @@
+import argparse
+import random
+from pathlib import Path
+
+import numpy as np
+import torch
+from lightning import LightningModule
+
+from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
+
+DEFAULT_OPSET = 15
+
+SEED = 1234
+random.seed(SEED)
+np.random.seed(SEED)
+torch.manual_seed(SEED)
+torch.cuda.manual_seed(SEED)
+torch.backends.cudnn.deterministic = True
+torch.backends.cudnn.benchmark = False
+
+
+class MatchaWithVocoder(LightningModule):
+ def __init__(self, matcha, vocoder):
+ super().__init__()
+ self.matcha = matcha
+ self.vocoder = vocoder
+
+ def forward(self, x, x_lengths, scales, spks=None):
+ mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
+ wavs = self.vocoder(mel).clamp(-1, 1)
+ lengths = mel_lengths * 256
+ return wavs.squeeze(1), lengths
+
+
+def get_exportable_module(matcha, vocoder, n_timesteps):
+ """
+ Return an appropriate `LighteningModule` and output-node names
+ based on whether the vocoder is embedded in the final graph
+ """
+
+ def onnx_forward_func(x, x_lengths, scales, spks=None):
+ """
+ Custom forward function for accepting
+ scaler parameters as tensors
+ """
+ # Extract scaler parameters from tensors
+ temperature = scales[0]
+ length_scale = scales[1]
+ output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
+ return output["mel"], output["mel_lengths"]
+
+ # Monkey-patch Matcha's forward function
+ matcha.forward = onnx_forward_func
+
+ if vocoder is None:
+ model, output_names = matcha, ["mel", "mel_lengths"]
+ else:
+ model = MatchaWithVocoder(matcha, vocoder)
+ output_names = ["wav", "wav_lengths"]
+ return model, output_names
+
+
+def get_inputs(is_multi_speaker):
+ """
+ Create dummy inputs for tracing
+ """
+ dummy_input_length = 50
+ x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
+ x_lengths = torch.LongTensor([dummy_input_length])
+
+ # Scales
+ temperature = 0.667
+ length_scale = 1.0
+ scales = torch.Tensor([temperature, length_scale])
+
+ model_inputs = [x, x_lengths, scales]
+ input_names = [
+ "x",
+ "x_lengths",
+ "scales",
+ ]
+
+ if is_multi_speaker:
+ spks = torch.LongTensor([1])
+ model_inputs.append(spks)
+ input_names.append("spks")
+
+ return tuple(model_inputs), input_names
+
+
+def main():
+ parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
+
+ parser.add_argument(
+ "checkpoint_path",
+ type=str,
+ help="Path to the model checkpoint",
+ )
+ parser.add_argument("output", type=str, help="Path to output `.onnx` file")
+ parser.add_argument(
+ "--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
+ )
+ parser.add_argument(
+ "--vocoder-name",
+ type=str,
+ choices=list(VOCODER_URLS.keys()),
+ default=None,
+ help="Name of the vocoder to embed in the ONNX graph",
+ )
+ parser.add_argument(
+ "--vocoder-checkpoint-path",
+ type=str,
+ default=None,
+ help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
+ )
+ parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
+
+ args = parser.parse_args()
+
+ print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
+ print(f"Setting n_timesteps to {args.n_timesteps}")
+
+ checkpoint_path = Path(args.checkpoint_path)
+ matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
+
+ if args.vocoder_name or args.vocoder_checkpoint_path:
+ assert (
+ args.vocoder_name and args.vocoder_checkpoint_path
+ ), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
+ vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
+ else:
+ vocoder = None
+
+ is_multi_speaker = matcha.n_spks > 1
+
+ dummy_input, input_names = get_inputs(is_multi_speaker)
+ model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
+
+ # Set dynamic shape for inputs/outputs
+ dynamic_axes = {
+ "x": {0: "batch_size", 1: "time"},
+ "x_lengths": {0: "batch_size"},
+ }
+
+ if vocoder is None:
+ dynamic_axes.update(
+ {
+ "mel": {0: "batch_size", 2: "time"},
+ "mel_lengths": {0: "batch_size"},
+ }
+ )
+ else:
+ print("Embedding the vocoder in the ONNX graph")
+ dynamic_axes.update(
+ {
+ "wav": {0: "batch_size", 1: "time"},
+ "wav_lengths": {0: "batch_size"},
+ }
+ )
+
+ if is_multi_speaker:
+ dynamic_axes["spks"] = {0: "batch_size"}
+
+ # Create the output directory (if not exists)
+ Path(args.output).parent.mkdir(parents=True, exist_ok=True)
+
+ model.to_onnx(
+ args.output,
+ dummy_input,
+ input_names=input_names,
+ output_names=output_names,
+ dynamic_axes=dynamic_axes,
+ opset_version=args.opset,
+ export_params=True,
+ do_constant_folding=True,
+ )
+ print(f"[🍵] ONNX model exported to {args.output}")
+
+
+if __name__ == "__main__":
+ main()
diff --git a/matcha/onnx/infer.py b/matcha/onnx/infer.py
new file mode 100644
index 0000000000000000000000000000000000000000..89ca92559c6df3776a07a038d7838242a3d19189
--- /dev/null
+++ b/matcha/onnx/infer.py
@@ -0,0 +1,168 @@
+import argparse
+import os
+import warnings
+from pathlib import Path
+from time import perf_counter
+
+import numpy as np
+import onnxruntime as ort
+import soundfile as sf
+import torch
+
+from matcha.cli import plot_spectrogram_to_numpy, process_text
+
+
+def validate_args(args):
+ assert (
+ args.text or args.file
+ ), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
+ assert args.temperature >= 0, "Sampling temperature cannot be negative"
+ assert args.speaking_rate >= 0, "Speaking rate must be greater than 0"
+ return args
+
+
+def write_wavs(model, inputs, output_dir, external_vocoder=None):
+ if external_vocoder is None:
+ print("The provided model has the vocoder embedded in the graph.\nGenerating waveform directly")
+ t0 = perf_counter()
+ wavs, wav_lengths = model.run(None, inputs)
+ infer_secs = perf_counter() - t0
+ mel_infer_secs = vocoder_infer_secs = None
+ else:
+ print("[🍵] Generating mel using Matcha")
+ mel_t0 = perf_counter()
+ mels, mel_lengths = model.run(None, inputs)
+ mel_infer_secs = perf_counter() - mel_t0
+ print("Generating waveform from mel using external vocoder")
+ vocoder_inputs = {external_vocoder.get_inputs()[0].name: mels}
+ vocoder_t0 = perf_counter()
+ wavs = external_vocoder.run(None, vocoder_inputs)[0]
+ vocoder_infer_secs = perf_counter() - vocoder_t0
+ wavs = wavs.squeeze(1)
+ wav_lengths = mel_lengths * 256
+ infer_secs = mel_infer_secs + vocoder_infer_secs
+
+ output_dir = Path(output_dir)
+ output_dir.mkdir(parents=True, exist_ok=True)
+ for i, (wav, wav_length) in enumerate(zip(wavs, wav_lengths)):
+ output_filename = output_dir.joinpath(f"output_{i + 1}.wav")
+ audio = wav[:wav_length]
+ print(f"Writing audio to {output_filename}")
+ sf.write(output_filename, audio, 22050, "PCM_24")
+
+ wav_secs = wav_lengths.sum() / 22050
+ print(f"Inference seconds: {infer_secs}")
+ print(f"Generated wav seconds: {wav_secs}")
+ rtf = infer_secs / wav_secs
+ if mel_infer_secs is not None:
+ mel_rtf = mel_infer_secs / wav_secs
+ print(f"Matcha RTF: {mel_rtf}")
+ if vocoder_infer_secs is not None:
+ vocoder_rtf = vocoder_infer_secs / wav_secs
+ print(f"Vocoder RTF: {vocoder_rtf}")
+ print(f"Overall RTF: {rtf}")
+
+
+def write_mels(model, inputs, output_dir):
+ t0 = perf_counter()
+ mels, mel_lengths = model.run(None, inputs)
+ infer_secs = perf_counter() - t0
+
+ output_dir = Path(output_dir)
+ output_dir.mkdir(parents=True, exist_ok=True)
+ for i, mel in enumerate(mels):
+ output_stem = output_dir.joinpath(f"output_{i + 1}")
+ plot_spectrogram_to_numpy(mel.squeeze(), output_stem.with_suffix(".png"))
+ np.save(output_stem.with_suffix(".numpy"), mel)
+
+ wav_secs = (mel_lengths * 256).sum() / 22050
+ print(f"Inference seconds: {infer_secs}")
+ print(f"Generated wav seconds: {wav_secs}")
+ rtf = infer_secs / wav_secs
+ print(f"RTF: {rtf}")
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description=" 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching"
+ )
+ parser.add_argument(
+ "model",
+ type=str,
+ help="ONNX model to use",
+ )
+ parser.add_argument("--vocoder", type=str, default=None, help="Vocoder to use (defaults to None)")
+ parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
+ parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
+ parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
+ parser.add_argument(
+ "--temperature",
+ type=float,
+ default=0.667,
+ help="Variance of the x0 noise (default: 0.667)",
+ )
+ parser.add_argument(
+ "--speaking-rate",
+ type=float,
+ default=1.0,
+ help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
+ )
+ parser.add_argument("--gpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
+ parser.add_argument(
+ "--output-dir",
+ type=str,
+ default=os.getcwd(),
+ help="Output folder to save results (default: current dir)",
+ )
+
+ args = parser.parse_args()
+ args = validate_args(args)
+
+ if args.gpu:
+ providers = ["GPUExecutionProvider"]
+ else:
+ providers = ["CPUExecutionProvider"]
+ model = ort.InferenceSession(args.model, providers=providers)
+
+ model_inputs = model.get_inputs()
+ model_outputs = list(model.get_outputs())
+
+ if args.text:
+ text_lines = args.text.splitlines()
+ else:
+ with open(args.file, encoding="utf-8") as file:
+ text_lines = file.read().splitlines()
+
+ processed_lines = [process_text(0, line, "cpu") for line in text_lines]
+ x = [line["x"].squeeze() for line in processed_lines]
+ # Pad
+ x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
+ x = x.detach().cpu().numpy()
+ x_lengths = np.array([line["x_lengths"].item() for line in processed_lines], dtype=np.int64)
+ inputs = {
+ "x": x,
+ "x_lengths": x_lengths,
+ "scales": np.array([args.temperature, args.speaking_rate], dtype=np.float32),
+ }
+ is_multi_speaker = len(model_inputs) == 4
+ if is_multi_speaker:
+ if args.spk is None:
+ args.spk = 0
+ warn = "[!] Speaker ID not provided! Using speaker ID 0"
+ warnings.warn(warn, UserWarning)
+ inputs["spks"] = np.repeat(args.spk, x.shape[0]).astype(np.int64)
+
+ has_vocoder_embedded = model_outputs[0].name == "wav"
+ if has_vocoder_embedded:
+ write_wavs(model, inputs, args.output_dir)
+ elif args.vocoder:
+ external_vocoder = ort.InferenceSession(args.vocoder, providers=providers)
+ write_wavs(model, inputs, args.output_dir, external_vocoder=external_vocoder)
+ else:
+ warn = "[!] A vocoder is not embedded in the graph nor an external vocoder is provided. The mel output will be written as numpy arrays to `*.npy` files in the output directory"
+ warnings.warn(warn, UserWarning)
+ write_mels(model, inputs, args.output_dir)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/matcha/text/__init__.py b/matcha/text/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..6c6fae204ad99a4f180ba2566074c1d584f188ec
--- /dev/null
+++ b/matcha/text/__init__.py
@@ -0,0 +1,54 @@
+""" from https://github.com/keithito/tacotron """
+from matcha.text import cleaners
+from matcha.text.symbols import symbols
+
+# Mappings from symbol to numeric ID and vice versa:
+_symbol_to_id = {s: i for i, s in enumerate(symbols)}
+_id_to_symbol = {i: s for i, s in enumerate(symbols)} # pylint: disable=unnecessary-comprehension
+
+
+def text_to_sequence(text, cleaner_names):
+ """Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
+ Args:
+ text: string to convert to a sequence
+ cleaner_names: names of the cleaner functions to run the text through
+ Returns:
+ List of integers corresponding to the symbols in the text
+ """
+ sequence = []
+
+ clean_text = _clean_text(text, cleaner_names)
+ for symbol in clean_text:
+ symbol_id = _symbol_to_id[symbol]
+ sequence += [symbol_id]
+ # print(text, clean_text, sep='\n')
+ return sequence
+
+
+def cleaned_text_to_sequence(cleaned_text):
+ """Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
+ Args:
+ text: string to convert to a sequence
+ Returns:
+ List of integers corresponding to the symbols in the text
+ """
+ sequence = [_symbol_to_id[symbol] for symbol in cleaned_text]
+ return sequence
+
+
+def sequence_to_text(sequence):
+ """Converts a sequence of IDs back to a string"""
+ result = ""
+ for symbol_id in sequence:
+ s = _id_to_symbol[symbol_id]
+ result += s
+ return result
+
+
+def _clean_text(text, cleaner_names):
+ for name in cleaner_names:
+ cleaner = getattr(cleaners, name)
+ if not cleaner:
+ raise Exception("Unknown cleaner: %s" % name)
+ text = cleaner(text)
+ return text
diff --git a/matcha/text/cleaners.py b/matcha/text/cleaners.py
new file mode 100644
index 0000000000000000000000000000000000000000..50a821511fa02d3a108cda8115a5cc6b46abf292
--- /dev/null
+++ b/matcha/text/cleaners.py
@@ -0,0 +1,114 @@
+""" from https://github.com/keithito/tacotron
+
+Cleaners are transformations that run over the input text at both training and eval time.
+
+Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
+hyperparameter. Some cleaners are English-specific. You'll typically want to use:
+ 1. "english_cleaners" for English text
+ 2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
+ the Unidecode library (https://pypi.python.org/pypi/Unidecode)
+ 3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
+ the symbols in symbols.py to match your data).
+"""
+
+import logging
+import re
+
+import phonemizer
+import piper_phonemize
+from unidecode import unidecode
+
+# To avoid excessive logging we set the log level of the phonemizer package to Critical
+critical_logger = logging.getLogger("phonemizer")
+critical_logger.setLevel(logging.CRITICAL)
+
+# Intializing the phonemizer globally significantly reduces the speed
+# now the phonemizer is not initialising at every call
+# Might be less flexible, but it is much-much faster
+global_phonemizer = phonemizer.backend.EspeakBackend(
+ language="ky",
+ preserve_punctuation=True,
+ with_stress=True,
+ language_switch="remove-flags",
+ logger=critical_logger,
+)
+
+
+# Regular expression matching whitespace:
+_whitespace_re = re.compile(r"\s+")
+
+# List of (regular expression, replacement) pairs for abbreviations:
+_abbreviations = [
+ (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
+ for x in [
+ ("mrs", "misess"),
+ ("mr", "mister"),
+ ("dr", "doctor"),
+ ("st", "saint"),
+ ("co", "company"),
+ ("jr", "junior"),
+ ("maj", "major"),
+ ("gen", "general"),
+ ("drs", "doctors"),
+ ("rev", "reverend"),
+ ("lt", "lieutenant"),
+ ("hon", "honorable"),
+ ("sgt", "sergeant"),
+ ("capt", "captain"),
+ ("esq", "esquire"),
+ ("ltd", "limited"),
+ ("col", "colonel"),
+ ("ft", "fort"),
+ ]
+]
+
+
+def expand_abbreviations(text):
+ for regex, replacement in _abbreviations:
+ text = re.sub(regex, replacement, text)
+ return text
+
+
+def lowercase(text):
+ return text.lower()
+
+
+def collapse_whitespace(text):
+ return re.sub(_whitespace_re, " ", text)
+
+
+def convert_to_ascii(text):
+ return unidecode(text)
+
+
+def basic_cleaners(text):
+ """Basic pipeline that lowercases and collapses whitespace without transliteration."""
+ text = lowercase(text)
+ text = collapse_whitespace(text)
+ return text
+
+
+def transliteration_cleaners(text):
+ """Pipeline for non-English text that transliterates to ASCII."""
+ text = convert_to_ascii(text)
+ text = lowercase(text)
+ text = collapse_whitespace(text)
+ return text
+
+
+def kyrgyz_cleaners(text):
+ """Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
+ text = lowercase(text)
+ phonemes = global_phonemizer.phonemize([text], strip=True, njobs=1)[0]
+ phonemes = collapse_whitespace(phonemes)
+ return phonemes
+
+
+def english_cleaners_piper(text):
+ """Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
+ text = convert_to_ascii(text)
+ text = lowercase(text)
+ text = expand_abbreviations(text)
+ phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
+ phonemes = collapse_whitespace(phonemes)
+ return phonemes
diff --git a/matcha/text/numbers.py b/matcha/text/numbers.py
new file mode 100644
index 0000000000000000000000000000000000000000..f99a8686dcb73532091122613e74bd643a8a327f
--- /dev/null
+++ b/matcha/text/numbers.py
@@ -0,0 +1,71 @@
+""" from https://github.com/keithito/tacotron """
+
+import re
+
+import inflect
+
+_inflect = inflect.engine()
+_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
+_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
+_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
+_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
+_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
+_number_re = re.compile(r"[0-9]+")
+
+
+def _remove_commas(m):
+ return m.group(1).replace(",", "")
+
+
+def _expand_decimal_point(m):
+ return m.group(1).replace(".", " point ")
+
+
+def _expand_dollars(m):
+ match = m.group(1)
+ parts = match.split(".")
+ if len(parts) > 2:
+ return match + " dollars"
+ dollars = int(parts[0]) if parts[0] else 0
+ cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
+ if dollars and cents:
+ dollar_unit = "dollar" if dollars == 1 else "dollars"
+ cent_unit = "cent" if cents == 1 else "cents"
+ return f"{dollars} {dollar_unit}, {cents} {cent_unit}"
+ elif dollars:
+ dollar_unit = "dollar" if dollars == 1 else "dollars"
+ return f"{dollars} {dollar_unit}"
+ elif cents:
+ cent_unit = "cent" if cents == 1 else "cents"
+ return f"{cents} {cent_unit}"
+ else:
+ return "zero dollars"
+
+
+def _expand_ordinal(m):
+ return _inflect.number_to_words(m.group(0))
+
+
+def _expand_number(m):
+ num = int(m.group(0))
+ if num > 1000 and num < 3000:
+ if num == 2000:
+ return "two thousand"
+ elif num > 2000 and num < 2010:
+ return "two thousand " + _inflect.number_to_words(num % 100)
+ elif num % 100 == 0:
+ return _inflect.number_to_words(num // 100) + " hundred"
+ else:
+ return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
+ else:
+ return _inflect.number_to_words(num, andword="")
+
+
+def normalize_numbers(text):
+ text = re.sub(_comma_number_re, _remove_commas, text)
+ text = re.sub(_pounds_re, r"\1 pounds", text)
+ text = re.sub(_dollars_re, _expand_dollars, text)
+ text = re.sub(_decimal_number_re, _expand_decimal_point, text)
+ text = re.sub(_ordinal_re, _expand_ordinal, text)
+ text = re.sub(_number_re, _expand_number, text)
+ return text
diff --git a/matcha/text/symbols.py b/matcha/text/symbols.py
new file mode 100644
index 0000000000000000000000000000000000000000..d462218fc0fb8a332a92bebdbad98ce5578ba856
--- /dev/null
+++ b/matcha/text/symbols.py
@@ -0,0 +1,18 @@
+""" from https://github.com/keithito/tacotron
+
+Defines the set of symbols used in text input to the model.
+"""
+_pad = "_"
+_punctuation = ';:,.!?¡¿—…"«»“” '
+_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
+_letters_ipa = (
+ "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑-1['̩'ᵻ"
+)
+
+
+# Export all symbols:
+symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
+
+# Special symbol ids
+SPACE_ID = symbols.index(" ")
+
diff --git a/matcha/utils/__init__.py b/matcha/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..074db6461184e8cbb86d977cb41d9ebd918e958a
--- /dev/null
+++ b/matcha/utils/__init__.py
@@ -0,0 +1,5 @@
+from matcha.utils.instantiators import instantiate_callbacks, instantiate_loggers
+from matcha.utils.logging_utils import log_hyperparameters
+from matcha.utils.pylogger import get_pylogger
+from matcha.utils.rich_utils import enforce_tags, print_config_tree
+from matcha.utils.utils import extras, get_metric_value, task_wrapper
diff --git a/matcha/utils/audio.py b/matcha/utils/audio.py
new file mode 100644
index 0000000000000000000000000000000000000000..0bcd74df47fb006f68deb5a5f4a4c2fb0aa84f57
--- /dev/null
+++ b/matcha/utils/audio.py
@@ -0,0 +1,82 @@
+import numpy as np
+import torch
+import torch.utils.data
+from librosa.filters import mel as librosa_mel_fn
+from scipy.io.wavfile import read
+
+MAX_WAV_VALUE = 32768.0
+
+
+def load_wav(full_path):
+ sampling_rate, data = read(full_path)
+ return data, sampling_rate
+
+
+def dynamic_range_compression(x, C=1, clip_val=1e-5):
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
+
+
+def dynamic_range_decompression(x, C=1):
+ return np.exp(x) / C
+
+
+def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
+ return torch.log(torch.clamp(x, min=clip_val) * C)
+
+
+def dynamic_range_decompression_torch(x, C=1):
+ return torch.exp(x) / C
+
+
+def spectral_normalize_torch(magnitudes):
+ output = dynamic_range_compression_torch(magnitudes)
+ return output
+
+
+def spectral_de_normalize_torch(magnitudes):
+ output = dynamic_range_decompression_torch(magnitudes)
+ return output
+
+
+mel_basis = {}
+hann_window = {}
+
+
+def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
+ if torch.min(y) < -1.0:
+ print("min value is ", torch.min(y))
+ if torch.max(y) > 1.0:
+ print("max value is ", torch.max(y))
+
+ global mel_basis, hann_window # pylint: disable=global-statement
+ if f"{str(fmax)}_{str(y.device)}" not in mel_basis:
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
+ mel_basis[str(fmax) + "_" + str(y.device)] = torch.from_numpy(mel).float().to(y.device)
+ hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
+
+ y = torch.nn.functional.pad(
+ y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
+ )
+ y = y.squeeze(1)
+
+ spec = torch.view_as_real(
+ torch.stft(
+ y,
+ n_fft,
+ hop_length=hop_size,
+ win_length=win_size,
+ window=hann_window[str(y.device)],
+ center=center,
+ pad_mode="reflect",
+ normalized=False,
+ onesided=True,
+ return_complex=True,
+ )
+ )
+
+ spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
+
+ spec = torch.matmul(mel_basis[str(fmax) + "_" + str(y.device)], spec)
+ spec = spectral_normalize_torch(spec)
+
+ return spec
diff --git a/matcha/utils/generate_data_statistics.py b/matcha/utils/generate_data_statistics.py
new file mode 100644
index 0000000000000000000000000000000000000000..96a5382296426803f1010385d184af7bfc901290
--- /dev/null
+++ b/matcha/utils/generate_data_statistics.py
@@ -0,0 +1,111 @@
+r"""
+The file creates a pickle file where the values needed for loading of dataset is stored and the model can load it
+when needed.
+
+Parameters from hparam.py will be used
+"""
+import argparse
+import json
+import os
+import sys
+from pathlib import Path
+
+import rootutils
+import torch
+from hydra import compose, initialize
+from omegaconf import open_dict
+from tqdm.auto import tqdm
+
+from matcha.data.text_mel_datamodule import TextMelDataModule
+from matcha.utils.logging_utils import pylogger
+
+log = pylogger.get_pylogger(__name__)
+
+
+def compute_data_statistics(data_loader: torch.utils.data.DataLoader, out_channels: int):
+ """Generate data mean and standard deviation helpful in data normalisation
+
+ Args:
+ data_loader (torch.utils.data.Dataloader): _description_
+ out_channels (int): mel spectrogram channels
+ """
+ total_mel_sum = 0
+ total_mel_sq_sum = 0
+ total_mel_len = 0
+
+ for batch in tqdm(data_loader, leave=False):
+ mels = batch["y"]
+ mel_lengths = batch["y_lengths"]
+
+ total_mel_len += torch.sum(mel_lengths)
+ total_mel_sum += torch.sum(mels)
+ total_mel_sq_sum += torch.sum(torch.pow(mels, 2))
+
+ data_mean = total_mel_sum / (total_mel_len * out_channels)
+ data_std = torch.sqrt((total_mel_sq_sum / (total_mel_len * out_channels)) - torch.pow(data_mean, 2))
+
+ return {"mel_mean": data_mean.item(), "mel_std": data_std.item()}
+
+
+def main():
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "-i",
+ "--input-config",
+ type=str,
+ default="vctk.yaml",
+ help="The name of the yaml config file under configs/data",
+ )
+
+ parser.add_argument(
+ "-b",
+ "--batch-size",
+ type=int,
+ default="256",
+ help="Can have increased batch size for faster computation",
+ )
+
+ parser.add_argument(
+ "-f",
+ "--force",
+ action="store_true",
+ default=False,
+ required=False,
+ help="force overwrite the file",
+ )
+ args = parser.parse_args()
+ output_file = Path(args.input_config).with_suffix(".json")
+
+ if os.path.exists(output_file) and not args.force:
+ print("File already exists. Use -f to force overwrite")
+ sys.exit(1)
+
+ with initialize(version_base="1.3", config_path="../../configs/data"):
+ cfg = compose(config_name=args.input_config, return_hydra_config=True, overrides=[])
+
+ root_path = rootutils.find_root(search_from=__file__, indicator=".project-root")
+
+ with open_dict(cfg):
+ del cfg["hydra"]
+ del cfg["_target_"]
+ cfg["data_statistics"] = None
+ cfg["seed"] = 1234
+ cfg["batch_size"] = args.batch_size
+ cfg["train_filelist_path"] = str(os.path.join(root_path, cfg["train_filelist_path"]))
+ cfg["valid_filelist_path"] = str(os.path.join(root_path, cfg["valid_filelist_path"]))
+
+ text_mel_datamodule = TextMelDataModule(**cfg)
+ text_mel_datamodule.setup()
+ data_loader = text_mel_datamodule.train_dataloader()
+ log.info("Dataloader loaded! Now computing stats...")
+ params = compute_data_statistics(data_loader, cfg["n_feats"])
+ print(params)
+ json.dump(
+ params,
+ open(output_file, "w"),
+ )
+
+
+if __name__ == "__main__":
+ main()
diff --git a/matcha/utils/instantiators.py b/matcha/utils/instantiators.py
new file mode 100644
index 0000000000000000000000000000000000000000..5547b4ed61ed8c21e63c528f58526a949879a94f
--- /dev/null
+++ b/matcha/utils/instantiators.py
@@ -0,0 +1,56 @@
+from typing import List
+
+import hydra
+from lightning import Callback
+from lightning.pytorch.loggers import Logger
+from omegaconf import DictConfig
+
+from matcha.utils import pylogger
+
+log = pylogger.get_pylogger(__name__)
+
+
+def instantiate_callbacks(callbacks_cfg: DictConfig) -> List[Callback]:
+ """Instantiates callbacks from config.
+
+ :param callbacks_cfg: A DictConfig object containing callback configurations.
+ :return: A list of instantiated callbacks.
+ """
+ callbacks: List[Callback] = []
+
+ if not callbacks_cfg:
+ log.warning("No callback configs found! Skipping..")
+ return callbacks
+
+ if not isinstance(callbacks_cfg, DictConfig):
+ raise TypeError("Callbacks config must be a DictConfig!")
+
+ for _, cb_conf in callbacks_cfg.items():
+ if isinstance(cb_conf, DictConfig) and "_target_" in cb_conf:
+ log.info(f"Instantiating callback <{cb_conf._target_}>") # pylint: disable=protected-access
+ callbacks.append(hydra.utils.instantiate(cb_conf))
+
+ return callbacks
+
+
+def instantiate_loggers(logger_cfg: DictConfig) -> List[Logger]:
+ """Instantiates loggers from config.
+
+ :param logger_cfg: A DictConfig object containing logger configurations.
+ :return: A list of instantiated loggers.
+ """
+ logger: List[Logger] = []
+
+ if not logger_cfg:
+ log.warning("No logger configs found! Skipping...")
+ return logger
+
+ if not isinstance(logger_cfg, DictConfig):
+ raise TypeError("Logger config must be a DictConfig!")
+
+ for _, lg_conf in logger_cfg.items():
+ if isinstance(lg_conf, DictConfig) and "_target_" in lg_conf:
+ log.info(f"Instantiating logger <{lg_conf._target_}>") # pylint: disable=protected-access
+ logger.append(hydra.utils.instantiate(lg_conf))
+
+ return logger
diff --git a/matcha/utils/logging_utils.py b/matcha/utils/logging_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..1a12d1ddafa25ca3ae8e497bcd7de2191f13659b
--- /dev/null
+++ b/matcha/utils/logging_utils.py
@@ -0,0 +1,53 @@
+from typing import Any, Dict
+
+from lightning.pytorch.utilities import rank_zero_only
+from omegaconf import OmegaConf
+
+from matcha.utils import pylogger
+
+log = pylogger.get_pylogger(__name__)
+
+
+@rank_zero_only
+def log_hyperparameters(object_dict: Dict[str, Any]) -> None:
+ """Controls which config parts are saved by Lightning loggers.
+
+ Additionally saves:
+ - Number of model parameters
+
+ :param object_dict: A dictionary containing the following objects:
+ - `"cfg"`: A DictConfig object containing the main config.
+ - `"model"`: The Lightning model.
+ - `"trainer"`: The Lightning trainer.
+ """
+ hparams = {}
+
+ cfg = OmegaConf.to_container(object_dict["cfg"])
+ model = object_dict["model"]
+ trainer = object_dict["trainer"]
+
+ if not trainer.logger:
+ log.warning("Logger not found! Skipping hyperparameter logging...")
+ return
+
+ hparams["model"] = cfg["model"]
+
+ # save number of model parameters
+ hparams["model/params/total"] = sum(p.numel() for p in model.parameters())
+ hparams["model/params/trainable"] = sum(p.numel() for p in model.parameters() if p.requires_grad)
+ hparams["model/params/non_trainable"] = sum(p.numel() for p in model.parameters() if not p.requires_grad)
+
+ hparams["data"] = cfg["data"]
+ hparams["trainer"] = cfg["trainer"]
+
+ hparams["callbacks"] = cfg.get("callbacks")
+ hparams["extras"] = cfg.get("extras")
+
+ hparams["task_name"] = cfg.get("task_name")
+ hparams["tags"] = cfg.get("tags")
+ hparams["ckpt_path"] = cfg.get("ckpt_path")
+ hparams["seed"] = cfg.get("seed")
+
+ # send hparams to all loggers
+ for logger in trainer.loggers:
+ logger.log_hyperparams(hparams)
diff --git a/matcha/utils/model.py b/matcha/utils/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..869cc6092f5952930534c47544fae88308e96abf
--- /dev/null
+++ b/matcha/utils/model.py
@@ -0,0 +1,90 @@
+""" from https://github.com/jaywalnut310/glow-tts """
+
+import numpy as np
+import torch
+
+
+def sequence_mask(length, max_length=None):
+ if max_length is None:
+ max_length = length.max()
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
+ return x.unsqueeze(0) < length.unsqueeze(1)
+
+
+def fix_len_compatibility(length, num_downsamplings_in_unet=2):
+ factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
+ length = (length / factor).ceil() * factor
+ if not torch.onnx.is_in_onnx_export():
+ return length.int().item()
+ else:
+ return length
+
+
+def convert_pad_shape(pad_shape):
+ inverted_shape = pad_shape[::-1]
+ pad_shape = [item for sublist in inverted_shape for item in sublist]
+ return pad_shape
+
+
+def generate_path(duration, mask):
+ device = duration.device
+
+ b, t_x, t_y = mask.shape
+ cum_duration = torch.cumsum(duration, 1)
+ path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
+
+ cum_duration_flat = cum_duration.view(b * t_x)
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
+ path = path.view(b, t_x, t_y)
+ path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
+ path = path * mask
+ return path
+
+
+def duration_loss(logw, logw_, lengths):
+ loss = torch.sum((logw - logw_) ** 2) / torch.sum(lengths)
+ return loss
+
+
+def normalize(data, mu, std):
+ if not isinstance(mu, (float, int)):
+ if isinstance(mu, list):
+ mu = torch.tensor(mu, dtype=data.dtype, device=data.device)
+ elif isinstance(mu, torch.Tensor):
+ mu = mu.to(data.device)
+ elif isinstance(mu, np.ndarray):
+ mu = torch.from_numpy(mu).to(data.device)
+ mu = mu.unsqueeze(-1)
+
+ if not isinstance(std, (float, int)):
+ if isinstance(std, list):
+ std = torch.tensor(std, dtype=data.dtype, device=data.device)
+ elif isinstance(std, torch.Tensor):
+ std = std.to(data.device)
+ elif isinstance(std, np.ndarray):
+ std = torch.from_numpy(std).to(data.device)
+ std = std.unsqueeze(-1)
+
+ return (data - mu) / std
+
+
+def denormalize(data, mu, std):
+ if not isinstance(mu, float):
+ if isinstance(mu, list):
+ mu = torch.tensor(mu, dtype=data.dtype, device=data.device)
+ elif isinstance(mu, torch.Tensor):
+ mu = mu.to(data.device)
+ elif isinstance(mu, np.ndarray):
+ mu = torch.from_numpy(mu).to(data.device)
+ mu = mu.unsqueeze(-1)
+
+ if not isinstance(std, float):
+ if isinstance(std, list):
+ std = torch.tensor(std, dtype=data.dtype, device=data.device)
+ elif isinstance(std, torch.Tensor):
+ std = std.to(data.device)
+ elif isinstance(std, np.ndarray):
+ std = torch.from_numpy(std).to(data.device)
+ std = std.unsqueeze(-1)
+
+ return data * std + mu
diff --git a/matcha/utils/monotonic_align/__init__.py b/matcha/utils/monotonic_align/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..eee6e0d47c2e3612ef02bc17442e6886998e5a94
--- /dev/null
+++ b/matcha/utils/monotonic_align/__init__.py
@@ -0,0 +1,22 @@
+import numpy as np
+import torch
+
+from matcha.utils.monotonic_align.core import maximum_path_c
+
+
+def maximum_path(value, mask):
+ """Cython optimised version.
+ value: [b, t_x, t_y]
+ mask: [b, t_x, t_y]
+ """
+ value = value * mask
+ device = value.device
+ dtype = value.dtype
+ value = value.data.cpu().numpy().astype(np.float32)
+ path = np.zeros_like(value).astype(np.int32)
+ mask = mask.data.cpu().numpy()
+
+ t_x_max = mask.sum(1)[:, 0].astype(np.int32)
+ t_y_max = mask.sum(2)[:, 0].astype(np.int32)
+ maximum_path_c(path, value, t_x_max, t_y_max)
+ return torch.from_numpy(path).to(device=device, dtype=dtype)
diff --git a/matcha/utils/monotonic_align/core.pyx b/matcha/utils/monotonic_align/core.pyx
new file mode 100644
index 0000000000000000000000000000000000000000..091fcc3a50a51f3d3fee47a70825260757e6d885
--- /dev/null
+++ b/matcha/utils/monotonic_align/core.pyx
@@ -0,0 +1,47 @@
+import numpy as np
+
+cimport cython
+cimport numpy as np
+
+from cython.parallel import prange
+
+
+@cython.boundscheck(False)
+@cython.wraparound(False)
+cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_x, int t_y, float max_neg_val) nogil:
+ cdef int x
+ cdef int y
+ cdef float v_prev
+ cdef float v_cur
+ cdef float tmp
+ cdef int index = t_x - 1
+
+ for y in range(t_y):
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
+ if x == y:
+ v_cur = max_neg_val
+ else:
+ v_cur = value[x, y-1]
+ if x == 0:
+ if y == 0:
+ v_prev = 0.
+ else:
+ v_prev = max_neg_val
+ else:
+ v_prev = value[x-1, y-1]
+ value[x, y] = max(v_cur, v_prev) + value[x, y]
+
+ for y in range(t_y - 1, -1, -1):
+ path[index, y] = 1
+ if index != 0 and (index == y or value[index, y-1] < value[index-1, y-1]):
+ index = index - 1
+
+
+@cython.boundscheck(False)
+@cython.wraparound(False)
+cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_xs, int[::1] t_ys, float max_neg_val=-1e9) nogil:
+ cdef int b = values.shape[0]
+
+ cdef int i
+ for i in prange(b, nogil=True):
+ maximum_path_each(paths[i], values[i], t_xs[i], t_ys[i], max_neg_val)
diff --git a/matcha/utils/monotonic_align/setup.py b/matcha/utils/monotonic_align/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..f22bc6a35a5a04c9e6d7b82040973722c9b770c9
--- /dev/null
+++ b/matcha/utils/monotonic_align/setup.py
@@ -0,0 +1,7 @@
+# from distutils.core import setup
+# from Cython.Build import cythonize
+# import numpy
+
+# setup(name='monotonic_align',
+# ext_modules=cythonize("core.pyx"),
+# include_dirs=[numpy.get_include()])
diff --git a/matcha/utils/pylogger.py b/matcha/utils/pylogger.py
new file mode 100644
index 0000000000000000000000000000000000000000..61600678029362e110f655edb91d5f3bc5b1cd1c
--- /dev/null
+++ b/matcha/utils/pylogger.py
@@ -0,0 +1,21 @@
+import logging
+
+from lightning.pytorch.utilities import rank_zero_only
+
+
+def get_pylogger(name: str = __name__) -> logging.Logger:
+ """Initializes a multi-GPU-friendly python command line logger.
+
+ :param name: The name of the logger, defaults to ``__name__``.
+
+ :return: A logger object.
+ """
+ logger = logging.getLogger(name)
+
+ # this ensures all logging levels get marked with the rank zero decorator
+ # otherwise logs would get multiplied for each GPU process in multi-GPU setup
+ logging_levels = ("debug", "info", "warning", "error", "exception", "fatal", "critical")
+ for level in logging_levels:
+ setattr(logger, level, rank_zero_only(getattr(logger, level)))
+
+ return logger
diff --git a/matcha/utils/rich_utils.py b/matcha/utils/rich_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..f602f6e9351d948946eb419eb4e420190ea634bc
--- /dev/null
+++ b/matcha/utils/rich_utils.py
@@ -0,0 +1,101 @@
+from pathlib import Path
+from typing import Sequence
+
+import rich
+import rich.syntax
+import rich.tree
+from hydra.core.hydra_config import HydraConfig
+from lightning.pytorch.utilities import rank_zero_only
+from omegaconf import DictConfig, OmegaConf, open_dict
+from rich.prompt import Prompt
+
+from matcha.utils import pylogger
+
+log = pylogger.get_pylogger(__name__)
+
+
+@rank_zero_only
+def print_config_tree(
+ cfg: DictConfig,
+ print_order: Sequence[str] = (
+ "data",
+ "model",
+ "callbacks",
+ "logger",
+ "trainer",
+ "paths",
+ "extras",
+ ),
+ resolve: bool = False,
+ save_to_file: bool = False,
+) -> None:
+ """Prints the contents of a DictConfig as a tree structure using the Rich library.
+
+ :param cfg: A DictConfig composed by Hydra.
+ :param print_order: Determines in what order config components are printed. Default is ``("data", "model",
+ "callbacks", "logger", "trainer", "paths", "extras")``.
+ :param resolve: Whether to resolve reference fields of DictConfig. Default is ``False``.
+ :param save_to_file: Whether to export config to the hydra output folder. Default is ``False``.
+ """
+ style = "dim"
+ tree = rich.tree.Tree("CONFIG", style=style, guide_style=style)
+
+ queue = []
+
+ # add fields from `print_order` to queue
+ for field in print_order:
+ _ = (
+ queue.append(field)
+ if field in cfg
+ else log.warning(f"Field '{field}' not found in config. Skipping '{field}' config printing...")
+ )
+
+ # add all the other fields to queue (not specified in `print_order`)
+ for field in cfg:
+ if field not in queue:
+ queue.append(field)
+
+ # generate config tree from queue
+ for field in queue:
+ branch = tree.add(field, style=style, guide_style=style)
+
+ config_group = cfg[field]
+ if isinstance(config_group, DictConfig):
+ branch_content = OmegaConf.to_yaml(config_group, resolve=resolve)
+ else:
+ branch_content = str(config_group)
+
+ branch.add(rich.syntax.Syntax(branch_content, "yaml"))
+
+ # print config tree
+ rich.print(tree)
+
+ # save config tree to file
+ if save_to_file:
+ with open(Path(cfg.paths.output_dir, "config_tree.log"), "w") as file:
+ rich.print(tree, file=file)
+
+
+@rank_zero_only
+def enforce_tags(cfg: DictConfig, save_to_file: bool = False) -> None:
+ """Prompts user to input tags from command line if no tags are provided in config.
+
+ :param cfg: A DictConfig composed by Hydra.
+ :param save_to_file: Whether to export tags to the hydra output folder. Default is ``False``.
+ """
+ if not cfg.get("tags"):
+ if "id" in HydraConfig().cfg.hydra.job:
+ raise ValueError("Specify tags before launching a multirun!")
+
+ log.warning("No tags provided in config. Prompting user to input tags...")
+ tags = Prompt.ask("Enter a list of comma separated tags", default="dev")
+ tags = [t.strip() for t in tags.split(",") if t != ""]
+
+ with open_dict(cfg):
+ cfg.tags = tags
+
+ log.info(f"Tags: {cfg.tags}")
+
+ if save_to_file:
+ with open(Path(cfg.paths.output_dir, "tags.log"), "w") as file:
+ rich.print(cfg.tags, file=file)
diff --git a/matcha/utils/utils.py b/matcha/utils/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..af65e09070b4a4786ad139ec6e3d57d5ef578204
--- /dev/null
+++ b/matcha/utils/utils.py
@@ -0,0 +1,219 @@
+import os
+import sys
+import warnings
+from importlib.util import find_spec
+from pathlib import Path
+from typing import Any, Callable, Dict, Tuple
+
+import gdown
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+import wget
+from omegaconf import DictConfig
+
+from matcha.utils import pylogger, rich_utils
+
+log = pylogger.get_pylogger(__name__)
+
+
+def extras(cfg: DictConfig) -> None:
+ """Applies optional utilities before the task is started.
+
+ Utilities:
+ - Ignoring python warnings
+ - Setting tags from command line
+ - Rich config printing
+
+ :param cfg: A DictConfig object containing the config tree.
+ """
+ # return if no `extras` config
+ if not cfg.get("extras"):
+ log.warning("Extras config not found! ")
+ return
+
+ # disable python warnings
+ if cfg.extras.get("ignore_warnings"):
+ log.info("Disabling python warnings! ")
+ warnings.filterwarnings("ignore")
+
+ # prompt user to input tags from command line if none are provided in the config
+ if cfg.extras.get("enforce_tags"):
+ log.info("Enforcing tags! ")
+ rich_utils.enforce_tags(cfg, save_to_file=True)
+
+ # pretty print config tree using Rich library
+ if cfg.extras.get("print_config"):
+ log.info("Printing config tree with Rich! ")
+ rich_utils.print_config_tree(cfg, resolve=True, save_to_file=True)
+
+
+def task_wrapper(task_func: Callable) -> Callable:
+ """Optional decorator that controls the failure behavior when executing the task function.
+
+ This wrapper can be used to:
+ - make sure loggers are closed even if the task function raises an exception (prevents multirun failure)
+ - save the exception to a `.log` file
+ - mark the run as failed with a dedicated file in the `logs/` folder (so we can find and rerun it later)
+ - etc. (adjust depending on your needs)
+
+ Example:
+ ```
+ @utils.task_wrapper
+ def train(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
+ ...
+ return metric_dict, object_dict
+ ```
+
+ :param task_func: The task function to be wrapped.
+
+ :return: The wrapped task function.
+ """
+
+ def wrap(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]:
+ # execute the task
+ try:
+ metric_dict, object_dict = task_func(cfg=cfg)
+
+ # things to do if exception occurs
+ except Exception as ex:
+ # save exception to `.log` file
+ log.exception("")
+
+ # some hyperparameter combinations might be invalid or cause out-of-memory errors
+ # so when using hparam search plugins like Optuna, you might want to disable
+ # raising the below exception to avoid multirun failure
+ raise ex
+
+ # things to always do after either success or exception
+ finally:
+ # display output dir path in terminal
+ log.info(f"Output dir: {cfg.paths.output_dir}")
+
+ # always close wandb run (even if exception occurs so multirun won't fail)
+ if find_spec("wandb"): # check if wandb is installed
+ import wandb
+
+ if wandb.run:
+ log.info("Closing wandb!")
+ wandb.finish()
+
+ return metric_dict, object_dict
+
+ return wrap
+
+
+def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
+ """Safely retrieves value of the metric logged in LightningModule.
+
+ :param metric_dict: A dict containing metric values.
+ :param metric_name: The name of the metric to retrieve.
+ :return: The value of the metric.
+ """
+ if not metric_name:
+ log.info("Metric name is None! Skipping metric value retrieval...")
+ return None
+
+ if metric_name not in metric_dict:
+ raise ValueError(
+ f"Metric value not found! \n"
+ "Make sure metric name logged in LightningModule is correct!\n"
+ "Make sure `optimized_metric` name in `hparams_search` config is correct!"
+ )
+
+ metric_value = metric_dict[metric_name].item()
+ log.info(f"Retrieved metric value! <{metric_name}={metric_value}>")
+
+ return metric_value
+
+
+def intersperse(lst, item):
+ # Adds blank symbol
+ result = [item] * (len(lst) * 2 + 1)
+ result[1::2] = lst
+ return result
+
+
+def save_figure_to_numpy(fig):
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
+ return data
+
+
+def plot_tensor(tensor):
+ plt.style.use("default")
+ fig, ax = plt.subplots(figsize=(12, 3))
+ im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
+ plt.colorbar(im, ax=ax)
+ plt.tight_layout()
+ fig.canvas.draw()
+ data = save_figure_to_numpy(fig)
+ plt.close()
+ return data
+
+
+def save_plot(tensor, savepath):
+ plt.style.use("default")
+ fig, ax = plt.subplots(figsize=(12, 3))
+ im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation="none")
+ plt.colorbar(im, ax=ax)
+ plt.tight_layout()
+ fig.canvas.draw()
+ plt.savefig(savepath)
+ plt.close()
+
+
+def to_numpy(tensor):
+ if isinstance(tensor, np.ndarray):
+ return tensor
+ elif isinstance(tensor, torch.Tensor):
+ return tensor.detach().cpu().numpy()
+ elif isinstance(tensor, list):
+ return np.array(tensor)
+ else:
+ raise TypeError("Unsupported type for conversion to numpy array")
+
+
+def get_user_data_dir(appname="matcha_tts"):
+ """
+ Args:
+ appname (str): Name of application
+
+ Returns:
+ Path: path to user data directory
+ """
+
+ MATCHA_HOME = os.environ.get("MATCHA_HOME")
+ if MATCHA_HOME is not None:
+ ans = Path(MATCHA_HOME).expanduser().resolve(strict=False)
+ elif sys.platform == "win32":
+ import winreg # pylint: disable=import-outside-toplevel
+
+ key = winreg.OpenKey(
+ winreg.HKEY_CURRENT_USER,
+ r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders",
+ )
+ dir_, _ = winreg.QueryValueEx(key, "Local AppData")
+ ans = Path(dir_).resolve(strict=False)
+ elif sys.platform == "darwin":
+ ans = Path("~/Library/Application Support/").expanduser()
+ else:
+ ans = Path.home().joinpath(".local/share")
+
+ final_path = ans.joinpath(appname)
+ final_path.mkdir(parents=True, exist_ok=True)
+ return final_path
+
+
+def assert_model_downloaded(checkpoint_path, url, use_wget=True):
+ if Path(checkpoint_path).exists():
+ log.debug(f"[+] Model already present at {checkpoint_path}!")
+ print(f"[+] Model already present at {checkpoint_path}!")
+ return
+ log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
+ print(f"[-] Model not found at {checkpoint_path}! Will download it")
+ checkpoint_path = str(checkpoint_path)
+ if not use_wget:
+ gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
+ else:
+ wget.download(url=url, out=checkpoint_path)
diff --git a/photo_2024-04-07_15-59-52.png b/photo_2024-04-07_15-59-52.png
new file mode 100644
index 0000000000000000000000000000000000000000..694944b8022b1d04b42dc2fd7325b08bd14654ce
Binary files /dev/null and b/photo_2024-04-07_15-59-52.png differ
diff --git a/pyproject.toml b/pyproject.toml
new file mode 100644
index 0000000000000000000000000000000000000000..74aa39300a61b8b3607dc634d68aa47013141ec5
--- /dev/null
+++ b/pyproject.toml
@@ -0,0 +1,51 @@
+[build-system]
+requires = ["setuptools", "wheel", "cython==0.29.35", "numpy==1.24.3", "packaging"]
+
+[tool.black]
+line-length = 120
+target-version = ['py310']
+exclude = '''
+
+(
+ /(
+ \.eggs # exclude a few common directories in the
+ | \.git # root of the project
+ | \.hg
+ | \.mypy_cache
+ | \.tox
+ | \.venv
+ | _build
+ | buck-out
+ | build
+ | dist
+ )/
+ | foo.py # also separately exclude a file named foo.py in
+ # the root of the project
+)
+'''
+
+[tool.pytest.ini_options]
+addopts = [
+ "--color=yes",
+ "--durations=0",
+ "--strict-markers",
+ "--doctest-modules",
+]
+filterwarnings = [
+ "ignore::DeprecationWarning",
+ "ignore::UserWarning",
+]
+log_cli = "True"
+markers = [
+ "slow: slow tests",
+]
+minversion = "6.0"
+testpaths = "tests/"
+
+[tool.coverage.report]
+exclude_lines = [
+ "pragma: nocover",
+ "raise NotImplementedError",
+ "raise NotImplementedError()",
+ "if __name__ == .__main__.:",
+]
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1716129f389e3a3d885ebe152bfe0dd3f9012447
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,58 @@
+# --------- pytorch --------- #
+torch>=2.0.0
+torchvision>=0.15.0
+lightning>=2.0.0
+torchmetrics>=0.11.4
+
+# --------- hydra --------- #
+hydra-core==1.3.2
+hydra-colorlog==1.2.0
+hydra-optuna-sweeper==1.2.0
+
+# --------- loggers --------- #
+wandb
+# neptune-client
+# mlflow
+# comet-ml
+# aim>=3.16.2 # no lower than 3.16.2, see https://github.com/aimhubio/aim/issues/2550
+
+# --------- others --------- #
+rootutils # standardizing the project root setup
+pre-commit # hooks for applying linters on commit
+rich # beautiful text formatting in terminal
+pytest # tests
+# sh # for running bash commands in some tests (linux/macos only)
+phonemizer # phonemization of text
+tensorboard
+librosa
+Cython
+numpy
+einops
+inflect
+Unidecode
+scipy
+torchaudio
+matplotlib
+pandas
+conformer==0.3.2
+diffusers==0.25.0
+notebook
+ipywidgets
+gradio==3.43.2
+gdown
+wget
+seaborn
+piper_phonemize
+huggingface_hub[cli]
+
+# ----- create dataset ---- #
+pandas==2.0.3
+numpy==1.25.2
+datasets==2.18.0
+transformers
+ipython==7.34.0
+librosa==0.10.1
+tqdm==4.66.2
+# ---- inference interface ---- #
+streamlit==1.33.0
+requests
diff --git a/setup.py b/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..9696d82c1e75d2521cd56daf78a6f7f14cf1254a
--- /dev/null
+++ b/setup.py
@@ -0,0 +1,40 @@
+#!/usr/bin/env python
+import os
+
+import numpy
+from Cython.Build import cythonize
+from setuptools import Extension, find_packages, setup
+
+exts = [
+ Extension(
+ name="matcha.utils.monotonic_align.core",
+ sources=["matcha/utils/monotonic_align/core.pyx"],
+ )
+]
+
+with open("README.md", encoding="utf-8") as readme_file:
+ README = readme_file.read()
+
+cwd = os.path.dirname(os.path.abspath(__file__))
+with open(os.path.join(cwd, "matcha", "VERSION")) as fin:
+ version = fin.read().strip()
+
+setup(
+ name="matcha-tts",
+ version=version,
+ description="🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching",
+ long_description=README,
+ long_description_content_type="text/markdown",
+ author="Shivam Mehta",
+ author_email="shivam.mehta25@gmail.com",
+ url="https://shivammehta25.github.io/Matcha-TTS",
+ install_requires=[str(r) for r in open(os.path.join(os.path.dirname(__file__), "requirements.txt"))],
+ include_dirs=[numpy.get_include()],
+ include_package_data=True,
+ packages=find_packages(exclude=["tests", "tests/*", "examples", "examples/*"]),
+ # use this to customize global commands available in the terminal after installing the package
+
+ ext_modules=cythonize(exts, language_level=3),
+ python_requires=">=3.9.0",
+)
+