|
from product_update_validator import Update_Validator |
|
import gradio as gr |
|
|
|
update_validator = Update_Validator(text_model="DistilRoBERTa-v1", image_model="CLIP-ViT Base", threshold=0.75) |
|
|
|
def gradio_interface(text1, image1, text2, image2, threshold=0.75): |
|
out = update_validator.validate(text1=text1, image1=image1, text2=text2, image2=image2, threshold=threshold, return_score=True) |
|
return out['score'], label['label'] |
|
|
|
inputs = [ |
|
gr.inputs.Textbox(lines=5, label="Description 1"), |
|
gr.inputs.Image(label="Image 1"), |
|
gr.inputs.Textbox(lines=5, label="Description 2"), |
|
gr.inputs.Image(label="Image 2"), |
|
gr.inputs.Slider(minimum=0, maximum=1, default=0.75, step=0.01, label="Similarity Threshold") |
|
] |
|
|
|
outputs = [ |
|
gr.outputs.Textbox(label="Similarity Score"), |
|
gr.outputs.Textbox(label="Update Label") |
|
] |
|
|
|
iface = gr.Interface(fn=gradio_interface, inputs=inputs, outputs=outputs, title="Product Update Validator") |
|
iface.launch() |