Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from tqdm import tqdm
|
4 |
+
import gradio as gr
|
5 |
+
import pickle
|
6 |
+
import random
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
url = "https://huggingface.co/thefcraft/prompt-generator-stable-diffusion/resolve/main/models.pickle"
|
10 |
+
|
11 |
+
if not os.path.exists('models.pickle'):
|
12 |
+
response = requests.get(url, stream=True)
|
13 |
+
|
14 |
+
with open('models.pickle', "wb") as handle:
|
15 |
+
for data in tqdm(response.iter_content()):
|
16 |
+
handle.write(data)
|
17 |
+
|
18 |
+
|
19 |
+
with open('models.pickle', 'rb')as f:
|
20 |
+
models = pickle.load(f)
|
21 |
+
|
22 |
+
LORA_TOKEN = ''#'<|>LORA_TOKEN<|>'
|
23 |
+
# WEIGHT_TOKEN = '<|>WEIGHT_TOKEN<|>'
|
24 |
+
NOT_SPLIT_TOKEN = '<|>NOT_SPLIT_TOKEN<|>'
|
25 |
+
|
26 |
+
def sample_next(ctx:str,model,k):
|
27 |
+
|
28 |
+
ctx = ', '.join(ctx.split(', ')[-k:])
|
29 |
+
if model.get(ctx) is None:
|
30 |
+
return " "
|
31 |
+
possible_Chars = list(model[ctx].keys())
|
32 |
+
possible_values = list(model[ctx].values())
|
33 |
+
|
34 |
+
# print(possible_Chars)
|
35 |
+
# print(possible_values)
|
36 |
+
|
37 |
+
return np.random.choice(possible_Chars,p=possible_values)
|
38 |
+
|
39 |
+
def generateText(model, minLen=100, size=5):
|
40 |
+
keys = list(model.keys())
|
41 |
+
starting_sent = random.choice(keys)
|
42 |
+
k = len(random.choice(keys).split(', '))
|
43 |
+
|
44 |
+
sentence = starting_sent
|
45 |
+
ctx = ', '.join(starting_sent.split(', ')[-k:])
|
46 |
+
|
47 |
+
while True:
|
48 |
+
next_prediction = sample_next(ctx,model,k)
|
49 |
+
sentence += f", {next_prediction}"
|
50 |
+
ctx = ', '.join(sentence.split(', ')[-k:])
|
51 |
+
|
52 |
+
# if sentence.count('\n')>size: break
|
53 |
+
if '\n' in sentence: break
|
54 |
+
sentence = sentence.replace(NOT_SPLIT_TOKEN, ', ')
|
55 |
+
# sentence = re.sub(WEIGHT_TOKEN.replace('|', '\|'), lambda match: f":{random.randint(0,2)}.{random.randint(0,9)}", sentence)
|
56 |
+
# sentence = sentence.replace(":0.0", ':0.1')
|
57 |
+
# return sentence
|
58 |
+
|
59 |
+
prompt = sentence.split('\n')[0]
|
60 |
+
if len(prompt)<minLen:
|
61 |
+
prompt = generateText(model, minLen, size=1)[0]
|
62 |
+
|
63 |
+
size = size-1
|
64 |
+
if size == 0: return [prompt]
|
65 |
+
output = []
|
66 |
+
for i in range(size+1):
|
67 |
+
prompt = generateText(model, minLen, size=1)[0]
|
68 |
+
output.append(prompt)
|
69 |
+
|
70 |
+
return output
|
71 |
+
|
72 |
+
def sentence_builder(quantity, Type, negative):
|
73 |
+
if Type == "NSFW": idx=1
|
74 |
+
elif Type == "SFW": idx=2
|
75 |
+
else: idx=0
|
76 |
+
model = models[idx]
|
77 |
+
output = ""
|
78 |
+
for i in range(quantity):
|
79 |
+
prompt = generateText(model[0], minLen=300, size=1)[0]
|
80 |
+
output+=f"PROMPT: {prompt}\n\n"
|
81 |
+
if negative:
|
82 |
+
negative_prompt = generateText(model[1], minLen=300, size=5)[0]
|
83 |
+
output+=f"NEGATIVE PROMPT: {prompt}\n"
|
84 |
+
output+="----------------------------------------------------------------"
|
85 |
+
output+="\n\n\n"
|
86 |
+
|
87 |
+
return output[:-3]
|
88 |
+
|
89 |
+
|
90 |
+
ui = gr.Interface(
|
91 |
+
sentence_builder,
|
92 |
+
[
|
93 |
+
gr.Slider(1, 10, value=4, label="Count", info="Choose between 1 and 10", step=1),
|
94 |
+
gr.Radio(["NSFW", "SFW", "BOTH"], label="TYPE", info="NSFW stands for NOT SAFE FOR WORK, so choose any one you want?"),
|
95 |
+
gr.Checkbox(label="negitive Prompt", info="Do you want to generate negative prompt as well as prompt?"),
|
96 |
+
],
|
97 |
+
"text"
|
98 |
+
)
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
ui.launch()
|