Spaces:
Build error
Build error
import base64 | |
import gradio as gr | |
import torch | |
import torchvision | |
from diffusers import DiffusionPipeline | |
import PIL.Image | |
import numpy as np | |
from io import BytesIO | |
ldm = DiffusionPipeline.from_pretrained("fusing/latent-diffusion-text2im-large") | |
generator = torch.manual_seed(42) | |
def greet(name): | |
#prompt = "A squirrel eating a burger" | |
prompt = name | |
image = ldm([prompt], generator=generator, eta=0.3, guidance_scale=6.0, num_inference_steps=50) | |
image_processed = image.cpu().permute(0, 2, 3, 1) | |
image_processed = image_processed * 255. | |
image_processed = image_processed.numpy().astype(np.uint8) | |
image_pil = PIL.Image.fromarray(image_processed[0]) | |
# save image as buffer | |
buffered = BytesIO() | |
image_pil.save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()) | |
print(img_str.decode('utf-8')) | |
return img_str.decode('utf-8') | |
#return "Gello " + prompt + "!!" | |
image = gr.Image(type="pil", label="Your result") | |
iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
iface.launch() |