Spaces:
Build error
Build error
thefreeham
commited on
Commit
•
3194719
1
Parent(s):
7ac0161
Update dalle_models.py
Browse files- dalle_models.py +108 -18
dalle_models.py
CHANGED
@@ -1,24 +1,114 @@
|
|
1 |
-
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
DALLE_MODEL_MEGA_FULL = "dalle-mini/dalle-mini/mega-1:latest" # DALL-E Mega. Warning: requires significantly more storage and GPU RAM
|
8 |
-
DALLE_COMMIT_ID = None
|
9 |
|
10 |
-
# VQGAN model
|
11 |
-
VQGAN_REPO = "dalle-mini/vqgan_imagenet_f16_16384"
|
12 |
-
VQGAN_COMMIT_ID = "e93a26e7707683d349bf5d5c41c5b0ef69b677a9"
|
13 |
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
GEN_TOP_K = None
|
17 |
-
GEN_TOP_P = None
|
18 |
-
TEMPERATURE = None
|
19 |
-
COND_SCALE = 10.0
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from functools import partial
|
4 |
|
5 |
+
import jax
|
6 |
+
import numpy as np
|
7 |
+
import jax.numpy as jnp
|
8 |
+
from PIL import Image
|
9 |
|
10 |
+
from dalle_mini import DalleBart, DalleBartProcessor
|
11 |
+
from vqgan_jax.modeling_flax_vqgan import VQModel
|
|
|
|
|
12 |
|
|
|
|
|
|
|
13 |
|
14 |
+
from flax.jax_utils import replicate
|
15 |
+
from flax.training.common_utils import shard_prng_key
|
16 |
|
17 |
+
import wandb
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
from consts import COND_SCALE, DALLE_COMMIT_ID, DALLE_MODEL_MEGA_FULL, DALLE_MODEL_MEGA, DALLE_MODEL_MINI, GEN_TOP_K, GEN_TOP_P, TEMPERATURE, VQGAN_COMMIT_ID, VQGAN_REPO, ModelSize
|
20 |
+
|
21 |
+
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" # https://github.com/saharmor/dalle-playground/issues/14#issuecomment-1147849318
|
22 |
+
os.environ["WANDB_SILENT"] = "true"
|
23 |
+
wandb.init(anonymous="must")
|
24 |
+
|
25 |
+
# model inference
|
26 |
+
@partial(jax.pmap, axis_name="batch", static_broadcasted_argnums=(3, 4, 5, 6, 7))
|
27 |
+
def p_generate(
|
28 |
+
tokenized_prompt, key, params, top_k, top_p, temperature, condition_scale, model
|
29 |
+
):
|
30 |
+
return model.generate(
|
31 |
+
**tokenized_prompt,
|
32 |
+
prng_key=key,
|
33 |
+
params=params,
|
34 |
+
top_k=top_k,
|
35 |
+
top_p=top_p,
|
36 |
+
temperature=temperature,
|
37 |
+
condition_scale=condition_scale,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
# decode images
|
42 |
+
@partial(jax.pmap, axis_name="batch", static_broadcasted_argnums=(0))
|
43 |
+
def p_decode(vqgan, indices, params):
|
44 |
+
return vqgan.decode_code(indices, params=params)
|
45 |
+
|
46 |
+
|
47 |
+
class DalleModel:
|
48 |
+
def __init__(self, model_version: ModelSize) -> None:
|
49 |
+
if model_version == ModelSize.MEGA_FULL:
|
50 |
+
dalle_model = DALLE_MODEL_MEGA_FULL
|
51 |
+
dtype = jnp.float16
|
52 |
+
elif model_version == ModelSize.MEGA:
|
53 |
+
dalle_model = DALLE_MODEL_MEGA
|
54 |
+
dtype = jnp.float16
|
55 |
+
else:
|
56 |
+
dalle_model = DALLE_MODEL_MINI
|
57 |
+
dtype = jnp.float32
|
58 |
+
|
59 |
+
|
60 |
+
# Load dalle-mini
|
61 |
+
self.model, params = DalleBart.from_pretrained(
|
62 |
+
dalle_model, revision=DALLE_COMMIT_ID, dtype=dtype, _do_init=False
|
63 |
+
)
|
64 |
+
|
65 |
+
# Load VQGAN
|
66 |
+
self.vqgan, vqgan_params = VQModel.from_pretrained(
|
67 |
+
VQGAN_REPO, revision=VQGAN_COMMIT_ID, _do_init=False
|
68 |
+
)
|
69 |
+
|
70 |
+
self.params = replicate(params)
|
71 |
+
self.vqgan_params = replicate(vqgan_params)
|
72 |
+
|
73 |
+
self.processor = DalleBartProcessor.from_pretrained(dalle_model, revision=DALLE_COMMIT_ID)
|
74 |
+
|
75 |
+
|
76 |
+
def tokenize_prompt(self, prompt: str):
|
77 |
+
tokenized_prompt = self.processor([prompt])
|
78 |
+
return replicate(tokenized_prompt)
|
79 |
+
|
80 |
+
|
81 |
+
def generate_images(self, prompt: str, num_predictions: int):
|
82 |
+
tokenized_prompt = self.tokenize_prompt(prompt)
|
83 |
+
|
84 |
+
# create a random key
|
85 |
+
seed = random.randint(0, 2 ** 32 - 1)
|
86 |
+
key = jax.random.PRNGKey(seed)
|
87 |
+
|
88 |
+
# generate images
|
89 |
+
images = []
|
90 |
+
for i in range(max(num_predictions // jax.device_count(), 1)):
|
91 |
+
# get a new key
|
92 |
+
key, subkey = jax.random.split(key)
|
93 |
+
|
94 |
+
encoded_images = p_generate(
|
95 |
+
tokenized_prompt,
|
96 |
+
shard_prng_key(subkey),
|
97 |
+
self.params,
|
98 |
+
GEN_TOP_K,
|
99 |
+
GEN_TOP_P,
|
100 |
+
TEMPERATURE,
|
101 |
+
COND_SCALE,
|
102 |
+
self.model
|
103 |
+
)
|
104 |
+
|
105 |
+
# remove BOS
|
106 |
+
encoded_images = encoded_images.sequences[..., 1:]
|
107 |
+
|
108 |
+
# decode images
|
109 |
+
decoded_images = p_decode(self.vqgan, encoded_images, self.vqgan_params)
|
110 |
+
decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3))
|
111 |
+
for img in decoded_images:
|
112 |
+
images.append(Image.fromarray(np.asarray(img * 255, dtype=np.uint8)))
|
113 |
+
|
114 |
+
return images
|