Not-Adam commited on
Commit
81a383d
1 Parent(s): 7380dca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -18
app.py CHANGED
@@ -172,23 +172,23 @@ def get_predicted_attributes(image_urls, category):
172
  if len(values) == 0:
173
  continue
174
 
175
- # Adjust labels for the pipeline
176
- attribute = attribute.replace("colartype", "collar").replace("sleevelength", "sleeve length").replace("fabricstyle", "fabric")
177
- values = [f"{attribute}: {value.strip()}, clothing: {category}" for value in values]
178
-
179
- # Get the predicted values for the attribute
180
- responses = pipe(image_urls, candidate_labels=values)
181
- most_common, score = get_most_common_label(responses)
182
- common_result.append(most_common)
183
-
184
- if attribute == "details":
185
- # Process additional details labels if the score is higher than 0.8
186
- for _ in range(2):
187
- values = [value for value in values if value != f"{most_common}, clothing: {category}"]
188
- responses = pipe(image_urls, candidate_labels=values)
189
- most_common, score = get_most_common_label(responses)
190
- if score > DETAILS_THRESHOLD * len(image_urls):
191
- common_result.append(most_common)
192
 
193
  # Convert common_result into a dictionary
194
  final = {}
@@ -209,7 +209,8 @@ def get_predicted_attributes(image_urls, category):
209
 
210
  def generate_prompt(category: Optional[str], tags: Optional[Set[str]],
211
  materials: Optional[List[Dict[str, int]]], attributes: Optional[List[Dict[str, str]]]) -> str:
212
-
 
213
  formatted_attributes = [f"{attr['key']}: {attr['value']}" for attr in attributes] if attributes else []
214
 
215
  formatted_string = "\\n".join(formatted_attributes) if formatted_attributes else "No attributes provided."
 
172
  if len(values) == 0:
173
  continue
174
 
175
+ # Adjust labels for the pipeline
176
+ attribute = attribute.replace("colartype", "collar").replace("sleevelength", "sleeve length").replace("fabricstyle", "fabric")
177
+ values = [f"{attribute}: {value.strip()}, clothing: {category}" for value in values]
178
+
179
+ # Get the predicted values for the attribute
180
+ responses = pipe(image_urls, candidate_labels=values)
181
+ most_common, score = get_most_common_label(responses)
182
+ common_result.append(most_common)
183
+
184
+ if attribute == "details":
185
+ # Process additional details labels if the score is higher than 0.8
186
+ for _ in range(2):
187
+ values = [value for value in values if value != f"{most_common}, clothing: {category}"]
188
+ responses = pipe(image_urls, candidate_labels=values)
189
+ most_common, score = get_most_common_label(responses)
190
+ if score > DETAILS_THRESHOLD * len(image_urls):
191
+ common_result.append(most_common)
192
 
193
  # Convert common_result into a dictionary
194
  final = {}
 
209
 
210
  def generate_prompt(category: Optional[str], tags: Optional[Set[str]],
211
  materials: Optional[List[Dict[str, int]]], attributes: Optional[List[Dict[str, str]]]) -> str:
212
+
213
+ print(attributes)
214
  formatted_attributes = [f"{attr['key']}: {attr['value']}" for attr in attributes] if attributes else []
215
 
216
  formatted_string = "\\n".join(formatted_attributes) if formatted_attributes else "No attributes provided."