File size: 14,707 Bytes
8a3ecfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
from __future__ import annotations

import os

import gradio as gr
import numpy as np
import torch
import torchaudio
from seamless_communication.models.inference.translator import Translator

from lang_list import (
    LANGUAGE_NAME_TO_CODE,
    S2ST_TARGET_LANGUAGE_NAMES,
    S2TT_TARGET_LANGUAGE_NAMES,
    T2TT_TARGET_LANGUAGE_NAMES,
    TEXT_SOURCE_LANGUAGE_NAMES,
)

DESCRIPTION = """# SeamlessM4T

[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.

This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
translation and more, without relying on multiple separate models.
"""

CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"

TASK_NAMES = [
    "S2ST (Speech to Speech translation)",
    "S2TT (Speech to Text translation)",
    "T2ST (Text to Speech translation)",
    "T2TT (Text to Text translation)",
    "ASR (Automatic Speech Recognition)",
]
AUDIO_SAMPLE_RATE = 16000.0
MAX_INPUT_AUDIO_LENGTH = 60  # in seconds
DEFAULT_TARGET_LANGUAGE = "French"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
translator = Translator(
    model_name_or_card="seamlessM4T_large",
    vocoder_name_or_card="vocoder_36langs",
    device=device,
    sample_rate=AUDIO_SAMPLE_RATE,
)


def predict(
    task_name: str,
    audio_source: str,
    input_audio_mic: str | None,
    input_audio_file: str | None,
    input_text: str | None,
    source_language: str | None,
    target_language: str,
) -> tuple[tuple[int, np.ndarray] | None, str]:
    task_name = task_name.split()[0]
    source_language_code = LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]

    if task_name in ["S2ST", "S2TT", "ASR"]:
        if audio_source == "microphone":
            input_data = input_audio_mic
        else:
            input_data = input_audio_file

        arr, org_sr = torchaudio.load(input_data)
        new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
        max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
        if new_arr.shape[1] > max_length:
            new_arr = new_arr[:, :max_length]
            gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
        torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
    else:
        input_data = input_text
    text_out, wav, sr = translator.predict(
        input=input_data,
        task_str=task_name,
        tgt_lang=target_language_code,
        src_lang=source_language_code,
        ngram_filtering=True,
    )
    if task_name in ["S2ST", "T2ST"]:
        return (sr, wav.cpu().detach().numpy()), text_out
    else:
        return None, text_out


def process_s2st_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
    return predict(
        task_name="S2ST",
        audio_source="file",
        input_audio_mic=None,
        input_audio_file=input_audio_file,
        input_text=None,
        source_language=None,
        target_language=target_language,
    )


def process_s2tt_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
    return predict(
        task_name="S2TT",
        audio_source="file",
        input_audio_mic=None,
        input_audio_file=input_audio_file,
        input_text=None,
        source_language=None,
        target_language=target_language,
    )


def process_t2st_example(
    input_text: str, source_language: str, target_language: str
) -> tuple[tuple[int, np.ndarray] | None, str]:
    return predict(
        task_name="T2ST",
        audio_source="",
        input_audio_mic=None,
        input_audio_file=None,
        input_text=input_text,
        source_language=source_language,
        target_language=target_language,
    )


def process_t2tt_example(
    input_text: str, source_language: str, target_language: str
) -> tuple[tuple[int, np.ndarray] | None, str]:
    return predict(
        task_name="T2TT",
        audio_source="",
        input_audio_mic=None,
        input_audio_file=None,
        input_text=input_text,
        source_language=source_language,
        target_language=target_language,
    )


def process_asr_example(input_audio_file: str, target_language: str) -> tuple[tuple[int, np.ndarray] | None, str]:
    return predict(
        task_name="ASR",
        audio_source="file",
        input_audio_mic=None,
        input_audio_file=input_audio_file,
        input_text=None,
        source_language=None,
        target_language=target_language,
    )


def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
    mic = audio_source == "microphone"
    return (
        gr.update(visible=mic, value=None),  # input_audio_mic
        gr.update(visible=not mic, value=None),  # input_audio_file
    )


def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
    task_name = task_name.split()[0]
    if task_name == "S2ST":
        return (
            gr.update(visible=True),  # audio_box
            gr.update(visible=False),  # input_text
            gr.update(visible=False),  # source_language
            gr.update(
                visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
            ),  # target_language
        )
    elif task_name == "S2TT":
        return (
            gr.update(visible=True),  # audio_box
            gr.update(visible=False),  # input_text
            gr.update(visible=False),  # source_language
            gr.update(
                visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
            ),  # target_language
        )
    elif task_name == "T2ST":
        return (
            gr.update(visible=False),  # audio_box
            gr.update(visible=True),  # input_text
            gr.update(visible=True),  # source_language
            gr.update(
                visible=True, choices=S2ST_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
            ),  # target_language
        )
    elif task_name == "T2TT":
        return (
            gr.update(visible=False),  # audio_box
            gr.update(visible=True),  # input_text
            gr.update(visible=True),  # source_language
            gr.update(
                visible=True, choices=T2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
            ),  # target_language
        )
    elif task_name == "ASR":
        return (
            gr.update(visible=True),  # audio_box
            gr.update(visible=False),  # input_text
            gr.update(visible=False),  # source_language
            gr.update(
                visible=True, choices=S2TT_TARGET_LANGUAGE_NAMES, value=DEFAULT_TARGET_LANGUAGE
            ),  # target_language
        )
    else:
        raise ValueError(f"Unknown task: {task_name}")


def update_output_ui(task_name: str) -> tuple[dict, dict]:
    task_name = task_name.split()[0]
    if task_name in ["S2ST", "T2ST"]:
        return (
            gr.update(visible=True, value=None),  # output_audio
            gr.update(value=None),  # output_text
        )
    elif task_name in ["S2TT", "T2TT", "ASR"]:
        return (
            gr.update(visible=False, value=None),  # output_audio
            gr.update(value=None),  # output_text
        )
    else:
        raise ValueError(f"Unknown task: {task_name}")


def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]:
    task_name = task_name.split()[0]
    return (
        gr.update(visible=task_name == "S2ST"),  # s2st_example_row
        gr.update(visible=task_name == "S2TT"),  # s2tt_example_row
        gr.update(visible=task_name == "T2ST"),  # t2st_example_row
        gr.update(visible=task_name == "T2TT"),  # t2tt_example_row
        gr.update(visible=task_name == "ASR"),  # asr_example_row
    )


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    with gr.Group():
        task_name = gr.Dropdown(
            label="Task",
            choices=TASK_NAMES,
            value=TASK_NAMES[0],
        )
        with gr.Row():
            source_language = gr.Dropdown(
                label="Source language",
                choices=TEXT_SOURCE_LANGUAGE_NAMES,
                value="English",
                visible=False,
            )
            target_language = gr.Dropdown(
                label="Target language",
                choices=S2ST_TARGET_LANGUAGE_NAMES,
                value=DEFAULT_TARGET_LANGUAGE,
            )
        with gr.Row() as audio_box:
            audio_source = gr.Radio(
                label="Audio source",
                choices=["file", "microphone"],
                value="file",
            )
            input_audio_mic = gr.Audio(
                label="Input speech",
                type="filepath",
                source="microphone",
                visible=False,
            )
            input_audio_file = gr.Audio(
                label="Input speech",
                type="filepath",
                source="upload",
                visible=True,
            )
        input_text = gr.Textbox(label="Input text", visible=False)
        btn = gr.Button("Translate")
        with gr.Column():
            output_audio = gr.Audio(
                label="Translated speech",
                autoplay=False,
                streaming=False,
                type="numpy",
            )
            output_text = gr.Textbox(label="Translated text")

    with gr.Row(visible=True) as s2st_example_row:
        s2st_examples = gr.Examples(
            examples=[
                ["assets/sample_input.mp3", "French"],
                ["assets/sample_input.mp3", "Mandarin Chinese"],
                ["assets/sample_input_2.mp3", "Hindi"],
                ["assets/sample_input_2.mp3", "Spanish"],
            ],
            inputs=[input_audio_file, target_language],
            outputs=[output_audio, output_text],
            fn=process_s2st_example,
            cache_examples=CACHE_EXAMPLES,
        )
    with gr.Row(visible=False) as s2tt_example_row:
        s2tt_examples = gr.Examples(
            examples=[
                ["assets/sample_input.mp3", "French"],
                ["assets/sample_input.mp3", "Mandarin Chinese"],
                ["assets/sample_input_2.mp3", "Hindi"],
                ["assets/sample_input_2.mp3", "Spanish"],
            ],
            inputs=[input_audio_file, target_language],
            outputs=[output_audio, output_text],
            fn=process_s2tt_example,
            cache_examples=CACHE_EXAMPLES,
        )
    with gr.Row(visible=False) as t2st_example_row:
        t2st_examples = gr.Examples(
            examples=[
                ["My favorite animal is the elephant.", "English", "French"],
                ["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
                [
                    "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
                    "English",
                    "Hindi",
                ],
                [
                    "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
                    "English",
                    "Spanish",
                ],
            ],
            inputs=[input_text, source_language, target_language],
            outputs=[output_audio, output_text],
            fn=process_t2st_example,
            cache_examples=CACHE_EXAMPLES,
        )
    with gr.Row(visible=False) as t2tt_example_row:
        t2tt_examples = gr.Examples(
            examples=[
                ["My favorite animal is the elephant.", "English", "French"],
                ["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
                [
                    "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
                    "English",
                    "Hindi",
                ],
                [
                    "Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
                    "English",
                    "Spanish",
                ],
            ],
            inputs=[input_text, source_language, target_language],
            outputs=[output_audio, output_text],
            fn=process_t2tt_example,
            cache_examples=CACHE_EXAMPLES,
        )
    with gr.Row(visible=False) as asr_example_row:
        asr_examples = gr.Examples(
            examples=[
                ["assets/sample_input.mp3", "English"],
                ["assets/sample_input_2.mp3", "English"],
            ],
            inputs=[input_audio_file, target_language],
            outputs=[output_audio, output_text],
            fn=process_asr_example,
            cache_examples=CACHE_EXAMPLES,
        )

    audio_source.change(
        fn=update_audio_ui,
        inputs=audio_source,
        outputs=[
            input_audio_mic,
            input_audio_file,
        ],
        queue=False,
        api_name=False,
    )
    task_name.change(
        fn=update_input_ui,
        inputs=task_name,
        outputs=[
            audio_box,
            input_text,
            source_language,
            target_language,
        ],
        queue=False,
        api_name=False,
    ).then(
        fn=update_output_ui,
        inputs=task_name,
        outputs=[output_audio, output_text],
        queue=False,
        api_name=False,
    ).then(
        fn=update_example_ui,
        inputs=task_name,
        outputs=[
            s2st_example_row,
            s2tt_example_row,
            t2st_example_row,
            t2tt_example_row,
            asr_example_row,
        ],
        queue=False,
        api_name=False,
    )

    btn.click(
        fn=predict,
        inputs=[
            task_name,
            audio_source,
            input_audio_mic,
            input_audio_file,
            input_text,
            source_language,
            target_language,
        ],
        outputs=[output_audio, output_text],
        api_name="run",
    )
demo.queue(max_size=50).launch()

# Linking models to the space
# 'facebook/seamless-m4t-large'
# 'facebook/SONAR'