import os import torch import gradio as gr import time from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from flores200_codes import flores_codes def load_models(): # build model and tokenizer model_name_dict = { "nllb-distilled-600M": "facebook/nllb-200-distilled-600M", #'nllb-1.3B': 'facebook/nllb-200-1.3B', #'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B', #'nllb-3.3B': 'facebook/nllb-200-3.3B', } model_dict = {} for call_name, real_name in model_name_dict.items(): print("\tLoading model: %s" % call_name) model = AutoModelForSeq2SeqLM.from_pretrained(real_name) tokenizer = AutoTokenizer.from_pretrained(real_name) model_dict[call_name + "_model"] = model model_dict[call_name + "_tokenizer"] = tokenizer return model_dict def translation(source, target, text): if len(model_dict) == 2: model_name = "nllb-distilled-600M" start_time = time.time() source = flores_codes[source] target = flores_codes[target] model = model_dict[model_name + "_model"] tokenizer = model_dict[model_name + "_tokenizer"] translator = pipeline( "translation", model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target, ) output = translator(text, max_length=400) end_time = time.time() output = output[0]["translation_text"] result = { "inference_time": end_time - start_time, "source": source, "target": target, "result": output, } return result if __name__ == "__main__": print("\tinit models") global model_dict model_dict = load_models() # define gradio demo lang_codes = list(flores_codes.keys()) # inputs = [gr.inputs.Radio(['nllb-distilled-600M', 'nllb-1.3B', 'nllb-distilled-1.3B'], label='NLLB Model'), inputs = [ gr.inputs.Dropdown(lang_codes, default="English", label="Source"), gr.inputs.Dropdown(lang_codes, default="Korean", label="Target"), gr.inputs.Textbox(lines=5, label="Input text"), ] outputs = gr.outputs.JSON() title = "NLLB distilled 600M demo" demo_status = "Demo is running on CPU" description = ( f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}" ) examples = [["English", "Korean", "Hi. nice to meet you"]] gr.Interface( translation, inputs, outputs, title=title, description=description, examples=examples, examples_per_page=50, ).launch()