Use mt5-xl-lm-adapt
Browse files
app.py
CHANGED
@@ -34,7 +34,7 @@ class TokenIteratorStreamer:
|
|
34 |
def generate_prompt(history):
|
35 |
prompt = ""
|
36 |
for chain in history[:-1]:
|
37 |
-
prompt += f"<human>: {chain[0]}\n<bot>: {chain[1]}
|
38 |
prompt += f"<human>: {history[-1][0]}\n<bot>:"
|
39 |
tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt))
|
40 |
return tokens
|
@@ -52,7 +52,7 @@ def generate(streamer, history):
|
|
52 |
[tokens],
|
53 |
beam_size=1,
|
54 |
max_decoding_length = 256,
|
55 |
-
repetition_penalty = 1.
|
56 |
callback = stepResultCallback
|
57 |
)
|
58 |
return results
|
@@ -60,7 +60,7 @@ def generate(streamer, history):
|
|
60 |
|
61 |
|
62 |
translator = ctranslate2.Translator("model", intra_threads=2)
|
63 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
64 |
end_token = "</s>"
|
65 |
end_token_id = tokenizer.encode(end_token)[0]
|
66 |
|
|
|
34 |
def generate_prompt(history):
|
35 |
prompt = ""
|
36 |
for chain in history[:-1]:
|
37 |
+
prompt += f"<human>: {chain[0]}\n<bot>: {chain[1]}\n"
|
38 |
prompt += f"<human>: {history[-1][0]}\n<bot>:"
|
39 |
tokens = tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt))
|
40 |
return tokens
|
|
|
52 |
[tokens],
|
53 |
beam_size=1,
|
54 |
max_decoding_length = 256,
|
55 |
+
repetition_penalty = 1.8,
|
56 |
callback = stepResultCallback
|
57 |
)
|
58 |
return results
|
|
|
60 |
|
61 |
|
62 |
translator = ctranslate2.Translator("model", intra_threads=2)
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("DKYoon/mt5-xl-lm-adapt")
|
64 |
end_token = "</s>"
|
65 |
end_token_id = tokenizer.encode(end_token)[0]
|
66 |
|