import gradio as gr from musiclang_predict import MusicLangPredictor import random import subprocess import os import torchaudio import torch import numpy as np from audiocraft.models import MusicGen from audiocraft.data.audio import audio_write from pydub import AudioSegment import spaces import tempfile from pydub import AudioSegment # Check if CUDA is available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Utility Functions def peak_normalize(y, target_peak=0.97): return target_peak * (y / np.max(np.abs(y))) def rms_normalize(y, target_rms=0.05): return y * (target_rms / np.sqrt(np.mean(y**2))) def preprocess_audio(waveform): waveform_np = waveform.cpu().squeeze().numpy() # Move to CPU before converting to NumPy # processed_waveform_np = rms_normalize(peak_normalize(waveform_np)) return torch.from_numpy(waveform_np).unsqueeze(0).to(device) def create_slices(song, sr, slice_duration, bpm, num_slices=5): song_length = song.shape[-1] / sr slices = [] # Ensure the first slice is from the beginning of the song first_slice_waveform = song[..., :int(slice_duration * sr)] slices.append(first_slice_waveform) for i in range(1, num_slices): possible_start_indices = list(range(int(slice_duration * sr), int(song_length * sr), int(4 * 60 / bpm * sr))) if not possible_start_indices: # If there are no valid start indices, duplicate the first slice slices.append(first_slice_waveform) continue random_start = random.choice(possible_start_indices) slice_end = random_start + int(slice_duration * sr) if slice_end > song_length * sr: # Wrap around to the beginning of the song remaining_samples = int(slice_end - song_length * sr) slice_waveform = torch.cat([song[..., random_start:], song[..., :remaining_samples]], dim=-1) else: slice_waveform = song[..., random_start:slice_end] if len(slice_waveform.squeeze()) < int(slice_duration * sr): additional_samples_needed = int(slice_duration * sr) - len(slice_waveform.squeeze()) slice_waveform = torch.cat([slice_waveform, song[..., :additional_samples_needed]], dim=-1) slices.append(slice_waveform) return slices def calculate_duration(bpm, min_duration=29, max_duration=30): single_bar_duration = 4 * 60 / bpm bars = max(min_duration // single_bar_duration, 1) while single_bar_duration * bars < min_duration: bars += 1 duration = single_bar_duration * bars while duration > max_duration and bars > 1: bars -= 1 duration = single_bar_duration * bars return duration @spaces.GPU(duration=60) def generate_midi(seed, use_chords, chord_progression, bpm): if seed == "": seed = random.randint(1, 10000) ml = MusicLangPredictor('musiclang/musiclang-v2') try: seed = int(seed) except ValueError: seed = random.randint(1, 10000) nb_tokens = 1024 temperature = 0.9 top_p = 1.0 if use_chords and chord_progression.strip(): score = ml.predict_chords( chord_progression, time_signature=(4, 4), temperature=temperature, topp=top_p, rng_seed=seed ) else: score = ml.predict( nb_tokens=nb_tokens, temperature=temperature, topp=top_p, rng_seed=seed ) midi_filename = f"output_{seed}.mid" wav_filename = midi_filename.replace(".mid", ".wav") score.to_midi(midi_filename, tempo=bpm, time_signature=(4, 4)) subprocess.run(["fluidsynth", "-ni", "font.sf2", midi_filename, "-F", wav_filename, "-r", "44100"]) # Clean up temporary MIDI file os.remove(midi_filename) sample_rate = 44100 # Assuming fixed sample rate from fluidsynth command return wav_filename @spaces.GPU(duration=90) def generate_music(wav_filename, prompt_duration, musicgen_model, num_iterations, bpm): # Load the audio from the passed file path song, sr = torchaudio.load(wav_filename) song = song.to(device) # Use the user-provided BPM value for duration calculation duration = calculate_duration(bpm) # Create slices from the song using the user-provided BPM value slices = create_slices(song, sr, 35, bpm, num_slices=5) # Load the model model_name = musicgen_model.split(" ")[0] model_continue = MusicGen.get_pretrained(model_name) # Setting generation parameters model_continue.set_generation_params( use_sampling=True, top_k=250, top_p=0.0, temperature=1.0, duration=duration, cfg_coef=3 ) all_audio_files = [] for i in range(num_iterations): slice_idx = i % len(slices) print(f"Running iteration {i + 1} using slice {slice_idx}...") prompt_waveform = slices[slice_idx][..., :int(prompt_duration * sr)] prompt_waveform = preprocess_audio(prompt_waveform) output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True) output = output.cpu() # Move the output tensor back to CPU # Make sure the output tensor has at most 2 dimensions if len(output.size()) > 2: output = output.squeeze() filename_without_extension = f'continue_{i}' filename_with_extension = f'{filename_without_extension}.wav' audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True) all_audio_files.append(f'{filename_without_extension}.wav.wav') # Assuming the library appends an extra .wav # Combine all audio files combined_audio = AudioSegment.empty() for filename in all_audio_files: combined_audio += AudioSegment.from_wav(filename) combined_audio_filename = f"combined_audio_{random.randint(1, 10000)}.mp3" combined_audio.export(combined_audio_filename, format="mp3") # Clean up temporary files for filename in all_audio_files: os.remove(filename) return combined_audio_filename @spaces.GPU(duration=90) def continue_music(input_audio_path, prompt_duration, musicgen_model, num_iterations, bpm): # Load the audio from the given file path song, sr = torchaudio.load(input_audio_path) song = song.to(device) # Calculate the slice from the end of the song based on prompt_duration num_samples = int(prompt_duration * sr) if song.shape[-1] < num_samples: raise ValueError("The prompt_duration is longer than the audio length.") start_idx = song.shape[-1] - num_samples prompt_waveform = song[..., start_idx:] # Prepare the audio slice for generation prompt_waveform = preprocess_audio(prompt_waveform) # Load the model and set generation parameters model_continue = MusicGen.get_pretrained(musicgen_model.split(" ")[0]) model_continue.set_generation_params( use_sampling=True, top_k=250, top_p=0.0, temperature=1.0, duration=calculate_duration(bpm), cfg_coef=3 ) original_audio = AudioSegment.from_mp3(input_audio_path) all_audio_files = [original_audio] # Start with the original audio file_paths_for_cleanup = [] # List to track generated file paths for cleanup for i in range(num_iterations): output = model_continue.generate_continuation(prompt_waveform, prompt_sample_rate=sr, progress=True) output = output.cpu() # Move the output tensor back to CPU if len(output.size()) > 2: output = output.squeeze() filename_without_extension = f'continue_{i}' filename_with_extension = f'{filename_without_extension}.wav' correct_filename_extension = f'{filename_without_extension}.wav.wav' # Apply the workaround for audio_write audio_write(filename_with_extension, output, model_continue.sample_rate, strategy="loudness", loudness_compressor=True) new_audio_segment = AudioSegment.from_wav(correct_filename_extension) all_audio_files.append(new_audio_segment) file_paths_for_cleanup.append(correct_filename_extension) # Add to cleanup list # Combine all audio files into one continuous segment combined_audio = sum(all_audio_files) combined_audio_filename = f"combined_audio_{random.randint(1, 10000)}.mp3" combined_audio.export(combined_audio_filename, format="mp3") # Clean up temporary files using the list of file paths for file_path in file_paths_for_cleanup: os.remove(file_path) return combined_audio_filename # Define the expandable sections musiclang_blurb = """ ## musiclang musiclang is a controllable ai midi model. it can generate midi sequences based on user-provided parameters, or unconditionally. [GitHub musiclang github](https://github.com/MusicLang/musiclang_predict) [Hugging Face musiclang huggingface space](https://huggingface.co/spaces/musiclang/musiclang-predict) """ musicgen_blurb = """ ## musicgen musicgen is a transformer-based music model that generates audio. It can also do something called a continuation, which was initially meant to extend musicgen outputs beyond 30 seconds. it can be used with any input audio to produce surprising results. [GitHub audiocraft github](https://github.com/facebookresearch/audiocraft) visit https://thecollabagepatch.com/infinitepolo.mp3 or https://thecollabagepatch.com/audiocraft.mp3 to hear continuations in action. see also https://youtube.com/@thecollabagepatch """ finetunes_blurb = """ ## fine-tuned models the fine-tunes hosted on the huggingface hub are provided collectively by the musicgen discord community. thanks to vanya, mj, hoenn, septicDNB and of course, lyra. [Discord musicgen discord](https://discord.gg/93kX8rGZ) [Open In Colab fine-tuning colab notebook by lyra](https://colab.research.google.com/drive/13tbcC3A42KlaUZ21qvUXd25SFLu8WIvb) """ # Define the fine-tunes blurb for each model fine_tunes_info = """ ## thepatch/vanya_ai_dnb_0.1 thepatch/vanya_ai_dnb_0.1 was trained by vanya. [![Twitter](https://huggingface.co/front/assets/huggingface_logo-noborder.svg)](https://twitter.com/@veryVANYA) . it treats almost all input audio as the beginning of a buildup to a dnb drop (can do downtempo well) ## thepatch/bleeps-medium thepatch/bleeps-medium was trained by kevin and lyra [![Twitter](https://huggingface.co/front/assets/huggingface_logo-noborder.svg)](https://twitter.com/@_lyraaaa_) . it is a medium model. it's more melodic and ambient sometimes than vanya's, but there's a 50/50 chance it gets real heavy with the edm vibes. It can be amazing at turning your chords into pads, and is a good percussionist. ## thepatch/budots_remix thepatch/budots_remix was trained by MJ BERSABEph. budots is a dope niche genre from the philippines apparently. this one will often do fascinating, demonic, kinds of vocal chopping. warning: it tends to speed up and slow down tempo, which makes it hard to use in a daw. ## thepatch/hoenn_lofi thepatch/hoenn_lofi is a large fine-tune by hoenn. [![Twitter](https://huggingface.co/front/assets/huggingface_logo-noborder.svg)](https://twitter.com/@eschatolocation) . this model is a large boi, and it shows. even tho it is trained to do lo-fi, its ability to run with your melodies and not ruin them is unparalleled among the fine-tunes so far. ## thepatch/PhonkV2 thepatch/PhonkV2 was trained by MJ BERSABEph. there are multiple versions in the discord. """ # Create the Gradio interface with gr.Blocks() as iface: gr.Markdown("# the-slot-machine") gr.Markdown("two ai's jamming. warning: outputs will be very strange, likely stupid, and possibly rad.") gr.Markdown("this is a musical slot machine. using musiclang, we get a midi output. then, we let a musicgen model to continue the from the beginning of the midi model's generation. then, musicgen can continue from the end of its own output. re-upload, trim and repeat with a different fine-tune and prompt duration for the coolest outputs.") with gr.Accordion("more info", open=False): gr.Markdown(musiclang_blurb) gr.Markdown(musicgen_blurb) gr.Markdown(finetunes_blurb) with gr.Accordion("fine-tunes info", open=False): gr.Markdown(fine_tunes_blurb) with gr.Row(): with gr.Column(): seed = gr.Textbox(label="Seed (leave blank for random)", value="") use_chords = gr.Checkbox(label="Control Chord Progression", value=False) chord_progression = gr.Textbox(label="Chord Progression (e.g., Am CM Dm E7 Am)", visible=True) bpm = gr.Slider(label="BPM", minimum=60, maximum=200, step=1, value=120) generate_midi_button = gr.Button("Generate MIDI") midi_audio = gr.Audio(label="Generated MIDI Audio", type="filepath") # Ensure this is set to handle file paths with gr.Column(): prompt_duration = gr.Dropdown(label="Prompt Duration (seconds)", choices=list(range(1, 11)), value=5) musicgen_model = gr.Dropdown(label="MusicGen Model", choices=[ "thepatch/vanya_ai_dnb_0.1 (small)", "thepatch/budots_remix (small)", "thepatch/PhonkV2 (small)", "thepatch/bleeps-medium (medium)", "thepatch/hoenn_lofi (large)" ], value="thepatch/vanya_ai_dnb_0.1 (small)") generate_music_button = gr.Button("Generate Music") output_audio = gr.Audio(label="Generated Music", type="filepath") continue_button = gr.Button("Continue Generating Music") continue_output_audio = gr.Audio(label="Continued Music Output", type="filepath") # Connecting the components generate_midi_button.click(generate_midi, inputs=[seed, use_chords, chord_progression, bpm], outputs=[midi_audio]) generate_music_button.click(generate_music, inputs=[midi_audio, prompt_duration, musicgen_model, num_iterations, bpm], outputs=[output_audio]) continue_button.click(continue_music, inputs=[output_audio, prompt_duration, musicgen_model, num_iterations, bpm], outputs=continue_output_audio) iface.launch()