Spaces:
Runtime error
Runtime error
added app
Browse files- .gitignore +5 -0
- .idea/.gitignore +8 -0
- app.py +312 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BTC-Autoformer.ipynb
|
2 |
+
BTC_Dataset_to_huggingface.ipynb
|
3 |
+
huggingface_model.ipynb
|
4 |
+
app_backtest.py
|
5 |
+
.idea/*
|
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
app.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Standard library imports
|
2 |
+
from typing import Optional, Iterable
|
3 |
+
|
4 |
+
# Third-party library imports
|
5 |
+
from transformers import PretrainedConfig, AutoformerForPrediction
|
6 |
+
from functools import lru_cache, partial
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import spaces
|
10 |
+
import torch
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
# External imports
|
14 |
+
|
15 |
+
# GluonTS imports
|
16 |
+
from gluonts.dataset.field_names import FieldName
|
17 |
+
from gluonts.transform import (
|
18 |
+
AddAgeFeature,
|
19 |
+
AddObservedValuesIndicator,
|
20 |
+
AddTimeFeatures,
|
21 |
+
AsNumpyArray,
|
22 |
+
Chain,
|
23 |
+
ExpectedNumInstanceSampler,
|
24 |
+
InstanceSplitter,
|
25 |
+
RemoveFields,
|
26 |
+
TestSplitSampler,
|
27 |
+
Transformation,
|
28 |
+
ValidationSplitSampler,
|
29 |
+
VstackFeatures,
|
30 |
+
RenameFields,
|
31 |
+
)
|
32 |
+
from gluonts.time_feature import time_features_from_frequency_str
|
33 |
+
from gluonts.transform.sampler import InstanceSampler
|
34 |
+
|
35 |
+
# Hugging Face Datasets imports
|
36 |
+
from datasets import Dataset, Features, Value, Sequence, load_dataset
|
37 |
+
|
38 |
+
# GluonTS Loader imports
|
39 |
+
from gluonts.dataset.loader import as_stacked_batches
|
40 |
+
|
41 |
+
import matplotlib.pyplot as plt
|
42 |
+
import matplotlib.dates as mdates
|
43 |
+
import numpy as np
|
44 |
+
|
45 |
+
def convert_to_pandas_period(date, freq):
|
46 |
+
return pd.Period(date, freq)
|
47 |
+
|
48 |
+
def transform_start_field(batch, freq):
|
49 |
+
batch["start"] = [convert_to_pandas_period(date, freq) for date in batch["start"]]
|
50 |
+
return batch
|
51 |
+
|
52 |
+
def create_transformation(freq: str, config: PretrainedConfig, prediction_length: int) -> Transformation:
|
53 |
+
remove_field_names = []
|
54 |
+
if config.num_static_real_features == 0:
|
55 |
+
remove_field_names.append(FieldName.FEAT_STATIC_REAL)
|
56 |
+
if config.num_dynamic_real_features == 0:
|
57 |
+
remove_field_names.append(FieldName.FEAT_DYNAMIC_REAL)
|
58 |
+
if config.num_static_categorical_features == 0:
|
59 |
+
remove_field_names.append(FieldName.FEAT_STATIC_CAT)
|
60 |
+
|
61 |
+
# a bit like torchvision.transforms.Compose
|
62 |
+
return Chain(
|
63 |
+
# step 1: remove static/dynamic fields if not specified
|
64 |
+
[RemoveFields(field_names=remove_field_names)]
|
65 |
+
# step 2: convert the data to NumPy (potentially not needed)
|
66 |
+
+ (
|
67 |
+
[
|
68 |
+
AsNumpyArray(
|
69 |
+
field=FieldName.FEAT_STATIC_CAT,
|
70 |
+
expected_ndim=1,
|
71 |
+
dtype=int,
|
72 |
+
)
|
73 |
+
]
|
74 |
+
if config.num_static_categorical_features > 0
|
75 |
+
else []
|
76 |
+
)
|
77 |
+
+ (
|
78 |
+
[
|
79 |
+
AsNumpyArray(
|
80 |
+
field=FieldName.FEAT_STATIC_REAL,
|
81 |
+
expected_ndim=1,
|
82 |
+
)
|
83 |
+
]
|
84 |
+
if config.num_static_real_features > 0
|
85 |
+
else []
|
86 |
+
)
|
87 |
+
+ [
|
88 |
+
AsNumpyArray(
|
89 |
+
field=FieldName.TARGET,
|
90 |
+
# we expect an extra dim for the multivariate case:
|
91 |
+
expected_ndim=1 if config.input_size == 1 else 2,
|
92 |
+
),
|
93 |
+
# step 3: handle the NaN's by filling in the target with zero
|
94 |
+
# and return the mask (which is in the observed values)
|
95 |
+
# true for observed values, false for nan's
|
96 |
+
# the decoder uses this mask (no loss is incurred for unobserved values)
|
97 |
+
# see loss_weights inside the xxxForPrediction model
|
98 |
+
AddObservedValuesIndicator(
|
99 |
+
target_field=FieldName.TARGET,
|
100 |
+
output_field=FieldName.OBSERVED_VALUES,
|
101 |
+
),
|
102 |
+
# step 4: add temporal features based on freq of the dataset
|
103 |
+
# and the desired prediction length
|
104 |
+
AddTimeFeatures(
|
105 |
+
start_field=FieldName.START,
|
106 |
+
target_field=FieldName.TARGET,
|
107 |
+
output_field=FieldName.FEAT_TIME,
|
108 |
+
time_features=time_features_from_frequency_str(freq),
|
109 |
+
pred_length=prediction_length,
|
110 |
+
),
|
111 |
+
# step 5: add another temporal feature (just a single number)
|
112 |
+
# tells the model where in its life the value of the time series is,
|
113 |
+
# sort of a running counter
|
114 |
+
AddAgeFeature(
|
115 |
+
target_field=FieldName.TARGET,
|
116 |
+
output_field=FieldName.FEAT_AGE,
|
117 |
+
pred_length=prediction_length,
|
118 |
+
log_scale=True,
|
119 |
+
),
|
120 |
+
# step 6: vertically stack all the temporal features into the key FEAT_TIME
|
121 |
+
VstackFeatures(
|
122 |
+
output_field=FieldName.FEAT_TIME,
|
123 |
+
input_fields=[FieldName.FEAT_TIME, FieldName.FEAT_AGE]
|
124 |
+
+ (
|
125 |
+
[FieldName.FEAT_DYNAMIC_REAL]
|
126 |
+
if config.num_dynamic_real_features > 0
|
127 |
+
else []
|
128 |
+
),
|
129 |
+
),
|
130 |
+
# step 7: rename to match HuggingFace names
|
131 |
+
RenameFields(
|
132 |
+
mapping={
|
133 |
+
FieldName.FEAT_STATIC_CAT: "static_categorical_features",
|
134 |
+
FieldName.FEAT_STATIC_REAL: "static_real_features",
|
135 |
+
FieldName.FEAT_TIME: "time_features",
|
136 |
+
FieldName.TARGET: "values",
|
137 |
+
FieldName.OBSERVED_VALUES: "observed_mask",
|
138 |
+
}
|
139 |
+
),
|
140 |
+
]
|
141 |
+
)
|
142 |
+
|
143 |
+
def create_instance_splitter(
|
144 |
+
config: PretrainedConfig,
|
145 |
+
mode: str,
|
146 |
+
prediction_length: int,
|
147 |
+
train_sampler: Optional[InstanceSampler] = None,
|
148 |
+
validation_sampler: Optional[InstanceSampler] = None,
|
149 |
+
) -> Transformation:
|
150 |
+
assert mode in ["train", "validation", "test"]
|
151 |
+
|
152 |
+
instance_sampler = {
|
153 |
+
"train": train_sampler
|
154 |
+
or ExpectedNumInstanceSampler(
|
155 |
+
num_instances=1.0, min_future=prediction_length
|
156 |
+
),
|
157 |
+
"validation": validation_sampler
|
158 |
+
or ValidationSplitSampler(min_future=prediction_length),
|
159 |
+
"test": TestSplitSampler(),
|
160 |
+
}[mode]
|
161 |
+
|
162 |
+
return InstanceSplitter(
|
163 |
+
target_field="values",
|
164 |
+
is_pad_field=FieldName.IS_PAD,
|
165 |
+
start_field=FieldName.START,
|
166 |
+
forecast_start_field=FieldName.FORECAST_START,
|
167 |
+
instance_sampler=instance_sampler,
|
168 |
+
past_length=config.context_length + max(config.lags_sequence),
|
169 |
+
future_length=prediction_length,
|
170 |
+
time_series_fields=["time_features", "observed_mask"],
|
171 |
+
)
|
172 |
+
|
173 |
+
def create_test_dataloader(
|
174 |
+
config: PretrainedConfig,
|
175 |
+
freq: str,
|
176 |
+
data: Dataset,
|
177 |
+
batch_size: int,
|
178 |
+
prediction_length: int,
|
179 |
+
**kwargs,
|
180 |
+
):
|
181 |
+
PREDICTION_INPUT_NAMES = [
|
182 |
+
"past_time_features",
|
183 |
+
"past_values",
|
184 |
+
"past_observed_mask",
|
185 |
+
"future_time_features",
|
186 |
+
]
|
187 |
+
if config.num_static_categorical_features > 0:
|
188 |
+
PREDICTION_INPUT_NAMES.append("static_categorical_features")
|
189 |
+
|
190 |
+
if config.num_static_real_features > 0:
|
191 |
+
PREDICTION_INPUT_NAMES.append("static_real_features")
|
192 |
+
|
193 |
+
transformation = create_transformation(freq, config, prediction_length)
|
194 |
+
transformed_data = transformation.apply(data, is_train=False)
|
195 |
+
|
196 |
+
# we create a Test Instance splitter which will sample the very last
|
197 |
+
# context window seen during training only for the encoder.
|
198 |
+
instance_sampler = create_instance_splitter(
|
199 |
+
config, "test", prediction_length=prediction_length
|
200 |
+
)
|
201 |
+
|
202 |
+
# we apply the transformations in test mode
|
203 |
+
testing_instances = instance_sampler.apply(transformed_data, is_train=False)
|
204 |
+
|
205 |
+
return as_stacked_batches(
|
206 |
+
testing_instances,
|
207 |
+
batch_size=batch_size,
|
208 |
+
output_type=torch.tensor,
|
209 |
+
field_names=PREDICTION_INPUT_NAMES,
|
210 |
+
)
|
211 |
+
|
212 |
+
def plot(ts_index, test_dataset, forecasts, prediction_length):
|
213 |
+
fig, ax = plt.subplots(figsize=(12, 8), facecolor='white')
|
214 |
+
|
215 |
+
# Length of the target data
|
216 |
+
target_length = len(test_dataset[ts_index]['target'])
|
217 |
+
|
218 |
+
# Creating a period range for the entire dataset plus forecast period
|
219 |
+
index = pd.period_range(
|
220 |
+
start=test_dataset[ts_index]['start'],
|
221 |
+
periods=target_length + prediction_length,
|
222 |
+
freq='1D'
|
223 |
+
).to_timestamp()
|
224 |
+
|
225 |
+
# Plotting actual data
|
226 |
+
ax.plot(
|
227 |
+
index[:target_length],
|
228 |
+
test_dataset[ts_index]['target'],
|
229 |
+
label="Actual"
|
230 |
+
)
|
231 |
+
|
232 |
+
# Plotting the forecast data
|
233 |
+
# Forecast starts right after the last actual data point
|
234 |
+
forecast_start_index = target_length
|
235 |
+
ax.plot(
|
236 |
+
index[forecast_start_index:],
|
237 |
+
forecasts[ts_index][0][:prediction_length], # Use forecasts[ts_index][0][:prediction_length] to slice the forecast values
|
238 |
+
label="Prediction"
|
239 |
+
)
|
240 |
+
|
241 |
+
ax.set_ylim(0, 140000)
|
242 |
+
ax.xaxis.set_major_locator(mdates.MonthLocator(bymonth=(1, 7)))
|
243 |
+
ax.xaxis.set_minor_locator(mdates.MonthLocator())
|
244 |
+
|
245 |
+
plt.legend()
|
246 |
+
return fig
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
zero = torch.Tensor([0]).cuda()
|
251 |
+
print(zero.device) # <-- 'cpu' 🤔
|
252 |
+
|
253 |
+
@spaces.GPU
|
254 |
+
def do_prediction(days_to_predict: int):
|
255 |
+
device = zero.device
|
256 |
+
|
257 |
+
# Define the desired prediction length
|
258 |
+
prediction_length = 7 # Number of time steps to predict into the future
|
259 |
+
freq = "1D" # Daily frequency
|
260 |
+
|
261 |
+
dataset = load_dataset("thesven/BTC-Daily-Avg-Market-Value")
|
262 |
+
|
263 |
+
dataset['test'].set_transform(partial(transform_start_field, freq=freq))
|
264 |
+
|
265 |
+
model = AutoformerForPrediction.from_pretrained("thesven/BTC-Autoformer-v1")
|
266 |
+
config = model.config
|
267 |
+
print(f"Config: {config}")
|
268 |
+
|
269 |
+
test_dataloader = create_test_dataloader(
|
270 |
+
config=config,
|
271 |
+
freq=freq,
|
272 |
+
data=dataset['test'],
|
273 |
+
batch_size=64,
|
274 |
+
prediction_length=prediction_length,
|
275 |
+
)
|
276 |
+
|
277 |
+
model.to(device)
|
278 |
+
model.eval()
|
279 |
+
|
280 |
+
forecasts = []
|
281 |
+
|
282 |
+
for batch in test_dataloader:
|
283 |
+
outputs = model.generate(
|
284 |
+
static_categorical_features=batch["static_categorical_features"].to(device)
|
285 |
+
if config.num_static_categorical_features > 0
|
286 |
+
else None,
|
287 |
+
static_real_features=batch["static_real_features"].to(device)
|
288 |
+
if config.num_static_real_features > 0
|
289 |
+
else None,
|
290 |
+
past_time_features=batch["past_time_features"].to(device),
|
291 |
+
past_values=batch["past_values"].to(device),
|
292 |
+
future_time_features=batch["future_time_features"].to(device),
|
293 |
+
past_observed_mask=batch["past_observed_mask"].to(device),
|
294 |
+
)
|
295 |
+
forecasts.append(outputs.sequences.cpu().numpy())
|
296 |
+
|
297 |
+
forecasts = np.vstack(forecasts)
|
298 |
+
|
299 |
+
print(forecasts.shape)
|
300 |
+
|
301 |
+
return plot(0, dataset['test'], forecasts, prediction_length)
|
302 |
+
|
303 |
+
|
304 |
+
interface = gr.Interface(
|
305 |
+
fn=do_prediction,
|
306 |
+
inputs=gr.Slider(minimum=1, maximum=30, step=1, label="Days to Predict"),
|
307 |
+
outputs="plot",
|
308 |
+
title="Prediction Plot",
|
309 |
+
description="Adjust the slider to set the number of days to predict.",
|
310 |
+
allow_flagging=False, # Disable flagging for simplicity
|
311 |
+
)
|
312 |
+
interface.launch()
|