#Import required Libraries import streamlit as st import pickle import pandas as pd import requests #Hide Streamlit Menu and Default Footer hide_menu_style = """ """ st.markdown(hide_menu_style, unsafe_allow_html=True) #Fetch posters from TMDb Database def fetch_poster(movie_id): response = requests.get('https://api.themoviedb.org/3/movie/{}?api_key=[TMDb-API-KEY]&language=en-US'.format(movie_id)) data = response.json() return "https://image.tmdb.org/t/p/w500/" + data['poster_path'] #Recommend movies based on content def recommend(movie): movie_index = movies[movies['original_title'] == movie].index[0] distances = similarity[movie_index] movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6] recommended_movies = [] recommended_movies_poster = [] for i in movies_list: movie_id = movies.iloc[i[0]].id recommended_movies.append(movies.iloc[i[0]].original_title) recommended_movies_poster.append(fetch_poster(movie_id)) return recommended_movies,recommended_movies_poster #Frontend Design for StreamLit WebApp Sidebar st.sidebar.subheader(" ") st.sidebar.subheader("Technology:") st.sidebar.text("Natural Language Processing") st.sidebar.subheader("Developed By") st.sidebar.text("Ashwin Raj, Student at UCEK") movies_dict = pickle.load(open('pickle/movie_dict.pkl','rb')) movies = pd.DataFrame(movies_dict) similarity = pickle.load(open('pickle/similarity.pkl','rb')) #Frontend Hero Section st.title("Movie Recommender System") selected_movie_name = st.selectbox( 'Select a movie to recommend', movies['original_title'].values) #Output Recommendations with Posters if st.button('Recommend'): name, posters = recommend(selected_movie_name) col1, col2, col3, col4, col5 = st.columns(5) with col1: st.text(name[0]) st.image(posters[0]) with col2: st.text(name[1]) st.image(posters[1]) with col3: st.text(name[2]) st.image(posters[2]) with col4: st.text(name[3]) st.image(posters[3]) with col5: st.text(name[4]) st.image(posters[4])