thliang01's picture
Upload app.py
df93a86
raw
history blame
946 Bytes
# app.py
import gradio as gr
import torch
import requests
from PIL import Image
from torchvision import transforms
model = torch.hub.load('pytorch/vision', 'resnet18', pretrained=True).eval()
# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")
def predict(inp):
inp = transforms.ToTensor()(inp).unsqueeze(0)
with torch.no_grad():
prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
confidences = {labels[i]: float(prediction[i]) for i in range(999)}
return confidences
# create gradio interface, with text input and dict output
gr.Interface(title="Image Classification in PyTorch",
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Label(num_top_classes=3),
examples=["lion.jpg", "cheetah.jpg"]).launch()
# run the app
gr.launch(server_port=7680, enable_queue=False, share=True)