OOTDiffusion / preprocess /humanparsing /datasets /simple_extractor_dataset.py
levihsu's picture
Upload 624 files
5a486d6 verified
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : [email protected]
@File : dataset.py
@Time : 8/30/19 9:12 PM
@Desc : Dataset Definition
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import pdb
import cv2
import numpy as np
from PIL import Image
from torch.utils import data
from utils.transforms import get_affine_transform
class SimpleFolderDataset(data.Dataset):
def __init__(self, root, input_size=[512, 512], transform=None):
self.root = root
self.input_size = input_size
self.transform = transform
self.aspect_ratio = input_size[1] * 1.0 / input_size[0]
self.input_size = np.asarray(input_size)
self.is_pil_image = False
if isinstance(root, Image.Image):
self.file_list = [root]
self.is_pil_image = True
elif os.path.isfile(root):
self.file_list = [os.path.basename(root)]
self.root = os.path.dirname(root)
else:
self.file_list = os.listdir(self.root)
def __len__(self):
return len(self.file_list)
def _box2cs(self, box):
x, y, w, h = box[:4]
return self._xywh2cs(x, y, w, h)
def _xywh2cs(self, x, y, w, h):
center = np.zeros((2), dtype=np.float32)
center[0] = x + w * 0.5
center[1] = y + h * 0.5
if w > self.aspect_ratio * h:
h = w * 1.0 / self.aspect_ratio
elif w < self.aspect_ratio * h:
w = h * self.aspect_ratio
scale = np.array([w, h], dtype=np.float32)
return center, scale
def __getitem__(self, index):
if self.is_pil_image:
img = np.asarray(self.file_list[index])[:, :, [2, 1, 0]]
else:
img_name = self.file_list[index]
img_path = os.path.join(self.root, img_name)
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
h, w, _ = img.shape
# Get person center and scale
person_center, s = self._box2cs([0, 0, w - 1, h - 1])
r = 0
trans = get_affine_transform(person_center, s, r, self.input_size)
input = cv2.warpAffine(
img,
trans,
(int(self.input_size[1]), int(self.input_size[0])),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0, 0, 0))
input = self.transform(input)
meta = {
'center': person_center,
'height': h,
'width': w,
'scale': s,
'rotation': r
}
return input, meta