Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,656 Bytes
bdf9962 fc91aa0 bdf9962 fc91aa0 bdf9962 fc91aa0 bdf9962 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import os
import PIL.Image
import torch
import numpy as np
from janus.utils.io import load_pil_images
from model_loader import load_model_and_processor
from janus.models import MultiModalityCausalLM, VLChatProcessor
from functools import lru_cache
import spaces
def prepare_classifier_free_guidance_input(input_embeds, vl_chat_processor, mmgpt, batch_size=16):
uncond_input_ids = torch.full((1, input_embeds.shape[1]),
vl_chat_processor.pad_id,
dtype=torch.long,
device=input_embeds.device)
uncond_input_ids[:, 0] = input_embeds.shape[1] - 1
uncond_input_ids[:, -1] = vl_chat_processor.tokenizer.eos_token_id
uncond_input_embeds = mmgpt.language_model.get_input_embeddings()(uncond_input_ids)
uncond_input_embeds[:, -1, :] = input_embeds[:, -1, :]
cond_input_embeds = input_embeds.repeat(batch_size, 1, 1)
uncond_input_embeds = uncond_input_embeds.repeat(batch_size, 1, 1)
combined_input_embeds = torch.stack([cond_input_embeds, uncond_input_embeds], dim=1)
combined_input_embeds = combined_input_embeds.view(batch_size * 2, -1, input_embeds.shape[-1])
return combined_input_embeds
@torch.inference_mode()
def generate(
mmgpt: MultiModalityCausalLM,
vl_chat_processor: VLChatProcessor,
inputs_embeds,
temperature: float = 1,
parallel_size: int = 1,
cfg_weight: float = 5,
image_token_num_per_image: int = 576,
img_size: int = 384,
patch_size: int = 16,
):
generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
inputs_embeds = prepare_classifier_free_guidance_input(inputs_embeds, vl_chat_processor, mmgpt, parallel_size)
for i in range(image_token_num_per_image):
outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None)
hidden_states = outputs.last_hidden_state
logits = mmgpt.gen_head(hidden_states[:, -1, :])
logit_cond = logits[0::2, :]
logit_uncond = logits[1::2, :]
logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
probs = torch.softmax(logits / temperature, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
generated_tokens[:, i] = next_token.squeeze(dim=-1)
next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
inputs_embeds = img_embeds.unsqueeze(dim=1)
dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size])
dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
dec = np.clip((dec + 1) / 2 * 255, 0, 255)
visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
visual_img[:, :, :] = dec
generated_images = []
for i in range(parallel_size):
generated_images.append(PIL.Image.fromarray(visual_img[i]))
return generated_images
@lru_cache(maxsize=1)
def get_start_tag_embed(vl_gpt, vl_chat_processor):
with torch.no_grad():
return vl_gpt.language_model.get_input_embeddings()(
vl_chat_processor.tokenizer.encode(vl_chat_processor.image_start_tag, add_special_tokens=False, return_tensors="pt").to(vl_gpt.device)
)
@spaces.GPU
def process_and_generate(input_image, prompt, num_images=4, cfg_weight=5):
# Set the model path
model_path = "deepseek-ai/Janus-1.3B"
# Load the model and processor
vl_gpt, vl_chat_processor = load_model_and_processor(model_path)
start_tag_embed = get_start_tag_embed(vl_gpt, vl_chat_processor)
nl = '\n'
conversation = [
{
"role": "User",
"content": f"<image_placeholder>{nl + prompt if prompt else ''}",
"images": [input_image],
},
{"role": "Assistant", "content": ""},
]
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
).to(vl_gpt.device)
with torch.no_grad():
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
inputs_embeds = torch.cat((inputs_embeds, start_tag_embed), dim=1)
generated_images = generate(
vl_gpt,
vl_chat_processor,
inputs_embeds,
parallel_size=num_images,
cfg_weight=cfg_weight
)
return generated_images |