import os import PIL.Image import torch import numpy as np from janus.utils.io import load_pil_images from model_loader import load_model_and_processor from janus.models import MultiModalityCausalLM, VLChatProcessor from functools import lru_cache import spaces def prepare_classifier_free_guidance_input(input_embeds, vl_chat_processor, mmgpt, batch_size=16): uncond_input_ids = torch.full((1, input_embeds.shape[1]), vl_chat_processor.pad_id, dtype=torch.long, device=input_embeds.device) uncond_input_ids[:, 0] = input_embeds.shape[1] - 1 uncond_input_ids[:, -1] = vl_chat_processor.tokenizer.eos_token_id uncond_input_embeds = mmgpt.language_model.get_input_embeddings()(uncond_input_ids) uncond_input_embeds[:, -1, :] = input_embeds[:, -1, :] cond_input_embeds = input_embeds.repeat(batch_size, 1, 1) uncond_input_embeds = uncond_input_embeds.repeat(batch_size, 1, 1) combined_input_embeds = torch.stack([cond_input_embeds, uncond_input_embeds], dim=1) combined_input_embeds = combined_input_embeds.view(batch_size * 2, -1, input_embeds.shape[-1]) return combined_input_embeds @torch.inference_mode() def generate( mmgpt: MultiModalityCausalLM, vl_chat_processor: VLChatProcessor, inputs_embeds, temperature: float = 1, parallel_size: int = 1, cfg_weight: float = 5, image_token_num_per_image: int = 576, img_size: int = 384, patch_size: int = 16, ): generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() inputs_embeds = prepare_classifier_free_guidance_input(inputs_embeds, vl_chat_processor, mmgpt, parallel_size) for i in range(image_token_num_per_image): outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) hidden_states = outputs.last_hidden_state logits = mmgpt.gen_head(hidden_states[:, -1, :]) logit_cond = logits[0::2, :] logit_uncond = logits[1::2, :] logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) probs = torch.softmax(logits / temperature, dim=-1) next_token = torch.multinomial(probs, num_samples=1) generated_tokens[:, i] = next_token.squeeze(dim=-1) next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) img_embeds = mmgpt.prepare_gen_img_embeds(next_token) inputs_embeds = img_embeds.unsqueeze(dim=1) dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) dec = np.clip((dec + 1) / 2 * 255, 0, 255) visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) visual_img[:, :, :] = dec generated_images = [] for i in range(parallel_size): generated_images.append(PIL.Image.fromarray(visual_img[i])) return generated_images @lru_cache(maxsize=1) def get_start_tag_embed(vl_gpt, vl_chat_processor): with torch.no_grad(): return vl_gpt.language_model.get_input_embeddings()( vl_chat_processor.tokenizer.encode(vl_chat_processor.image_start_tag, add_special_tokens=False, return_tensors="pt").to(vl_gpt.device) ) @spaces.GPU def process_and_generate(input_image, prompt, num_images=4, cfg_weight=5): # Set the model path model_path = "deepseek-ai/Janus-1.3B" # Load the model and processor vl_gpt, vl_chat_processor = load_model_and_processor(model_path) start_tag_embed = get_start_tag_embed(vl_gpt, vl_chat_processor) nl = '\n' conversation = [ { "role": "User", "content": f"{nl + prompt if prompt else ''}", "images": [input_image], }, {"role": "Assistant", "content": ""}, ] pil_images = load_pil_images(conversation) prepare_inputs = vl_chat_processor( conversations=conversation, images=pil_images, force_batchify=True ).to(vl_gpt.device) with torch.no_grad(): inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) inputs_embeds = torch.cat((inputs_embeds, start_tag_embed), dim=1) generated_images = generate( vl_gpt, vl_chat_processor, inputs_embeds, parallel_size=num_images, cfg_weight=cfg_weight ) return generated_images