Spaces:
Runtime error
Runtime error
Thong Nguyen
commited on
Commit
•
c494e29
1
Parent(s):
0b91904
fix llava
Browse files- app.py +10 -12
- flagged/log.csv +2 -0
- flagged/video_file/tmpiq5zmz4o.mp4 +0 -0
- llava/__pycache__/__init__.cpython-39.pyc +0 -0
- llava/__pycache__/conversation.cpython-39.pyc +0 -0
- llava/__pycache__/utils.cpython-39.pyc +0 -0
- llava/model/__pycache__/builder.cpython-39.pyc +0 -0
- llava/model/__pycache__/llava_arch.cpython-39.pyc +0 -0
- llava/model/builder.py +1 -2
- llava/model/language_model/__pycache__/llava_llama.cpython-39.pyc +0 -0
- llava/model/language_model/llava_llama.py +359 -2
- llava/model/llava_arch.py +1 -1
- llava/model/multimodal_encoder/__pycache__/clip_encoder.cpython-39.pyc +0 -0
- llava/model/multimodal_encoder/clip_encoder.py +129 -2
- requirements.txt +3 -2
- video_keyframe_detector/KeyFrameDetector/__pycache__/__init__.cpython-39.pyc +0 -0
- video_keyframe_detector/KeyFrameDetector/__pycache__/key_frame_detector.cpython-39.pyc +0 -0
- video_keyframe_detector/KeyFrameDetector/__pycache__/utils.cpython-39.pyc +0 -0
- video_keyframe_detector/__pycache__/cli.cpython-39.pyc +0 -0
app.py
CHANGED
@@ -23,7 +23,9 @@ from llava.mm_utils import (
|
|
23 |
KeywordsStoppingCriteria,
|
24 |
)
|
25 |
import torch
|
26 |
-
|
|
|
|
|
27 |
|
28 |
def extract_keyframes(video_path, num_keyframes=12):
|
29 |
video_id = video_path.split('/')[-1].strip().split('.')[0]
|
@@ -126,7 +128,7 @@ def eval_model(args, model_name, tokenizer, model, image_processor, context_len)
|
|
126 |
images,
|
127 |
image_processor,
|
128 |
model.config
|
129 |
-
).to(model.device, dtype=torch.
|
130 |
|
131 |
input_ids = (
|
132 |
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
@@ -136,14 +138,14 @@ def eval_model(args, model_name, tokenizer, model, image_processor, context_len)
|
|
136 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
137 |
keywords = [stop_str]
|
138 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
139 |
-
|
140 |
with torch.inference_mode():
|
141 |
output_ids = model.generate(
|
142 |
input_ids,
|
143 |
images=images_tensor,
|
144 |
-
do_sample=
|
145 |
temperature=0.2,
|
146 |
-
max_new_tokens=
|
147 |
use_cache=True,
|
148 |
stopping_criteria=[stopping_criteria],
|
149 |
)
|
@@ -165,9 +167,6 @@ def eval_model(args, model_name, tokenizer, model, image_processor, context_len)
|
|
165 |
|
166 |
|
167 |
def generate_video_caption(video_path):
|
168 |
-
model_path = "liuhaotian/llava-v1.5-7b"
|
169 |
-
model_name = get_model_name_from_path(model_path)
|
170 |
-
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, device_map="auto", offload_folder="offload_folder")
|
171 |
video_id = video_path.split('/')[-1].strip().split('.')[0]
|
172 |
|
173 |
image_file = os.path.join("concatenated_frames", f"{video_id}.jpg")
|
@@ -181,7 +180,7 @@ def generate_video_caption(video_path):
|
|
181 |
"conv_mode": None,
|
182 |
"image_file": image_file,
|
183 |
"sep": ",",
|
184 |
-
"max_new_tokens":
|
185 |
"temperature": 0.2
|
186 |
})()
|
187 |
|
@@ -204,13 +203,12 @@ def video_to_text(video_file):
|
|
204 |
|
205 |
return video_caption
|
206 |
|
207 |
-
|
208 |
iface = gr.Interface(
|
209 |
fn=video_to_text,
|
210 |
inputs=gr.File(file_types=["video"]),
|
211 |
outputs="text",
|
212 |
-
title="Video
|
213 |
description="Upload a video and get the transcribed text"
|
214 |
)
|
215 |
|
216 |
-
iface.launch()
|
|
|
23 |
KeywordsStoppingCriteria,
|
24 |
)
|
25 |
import torch
|
26 |
+
model_path = "liuhaotian/llava-v1.5-7b"
|
27 |
+
model_name = get_model_name_from_path(model_path)
|
28 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, device_map='cpu', offload_folder='offload_folder')
|
29 |
|
30 |
def extract_keyframes(video_path, num_keyframes=12):
|
31 |
video_id = video_path.split('/')[-1].strip().split('.')[0]
|
|
|
128 |
images,
|
129 |
image_processor,
|
130 |
model.config
|
131 |
+
).to(model.device, dtype=torch.float16)
|
132 |
|
133 |
input_ids = (
|
134 |
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
|
|
138 |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
139 |
keywords = [stop_str]
|
140 |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
141 |
+
|
142 |
with torch.inference_mode():
|
143 |
output_ids = model.generate(
|
144 |
input_ids,
|
145 |
images=images_tensor,
|
146 |
+
do_sample=False,
|
147 |
temperature=0.2,
|
148 |
+
max_new_tokens=64,
|
149 |
use_cache=True,
|
150 |
stopping_criteria=[stopping_criteria],
|
151 |
)
|
|
|
167 |
|
168 |
|
169 |
def generate_video_caption(video_path):
|
|
|
|
|
|
|
170 |
video_id = video_path.split('/')[-1].strip().split('.')[0]
|
171 |
|
172 |
image_file = os.path.join("concatenated_frames", f"{video_id}.jpg")
|
|
|
180 |
"conv_mode": None,
|
181 |
"image_file": image_file,
|
182 |
"sep": ",",
|
183 |
+
"max_new_tokens": 64,
|
184 |
"temperature": 0.2
|
185 |
})()
|
186 |
|
|
|
203 |
|
204 |
return video_caption
|
205 |
|
|
|
206 |
iface = gr.Interface(
|
207 |
fn=video_to_text,
|
208 |
inputs=gr.File(file_types=["video"]),
|
209 |
outputs="text",
|
210 |
+
title="MAMA Video-Text Generation Pipeline",
|
211 |
description="Upload a video and get the transcribed text"
|
212 |
)
|
213 |
|
214 |
+
iface.launch(share=True)
|
flagged/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
video_file,output,flag,username,timestamp
|
2 |
+
/mnt/data/nguyenpk/mama/flagged/video_file/tmpiq5zmz4o.mp4,,,,2024-10-07 09:21:18.784629
|
flagged/video_file/tmpiq5zmz4o.mp4
ADDED
Binary file (351 kB). View file
|
|
llava/__pycache__/__init__.cpython-39.pyc
CHANGED
Binary files a/llava/__pycache__/__init__.cpython-39.pyc and b/llava/__pycache__/__init__.cpython-39.pyc differ
|
|
llava/__pycache__/conversation.cpython-39.pyc
CHANGED
Binary files a/llava/__pycache__/conversation.cpython-39.pyc and b/llava/__pycache__/conversation.cpython-39.pyc differ
|
|
llava/__pycache__/utils.cpython-39.pyc
CHANGED
Binary files a/llava/__pycache__/utils.cpython-39.pyc and b/llava/__pycache__/utils.cpython-39.pyc differ
|
|
llava/model/__pycache__/builder.cpython-39.pyc
CHANGED
Binary files a/llava/model/__pycache__/builder.cpython-39.pyc and b/llava/model/__pycache__/builder.cpython-39.pyc differ
|
|
llava/model/__pycache__/llava_arch.cpython-39.pyc
CHANGED
Binary files a/llava/model/__pycache__/llava_arch.cpython-39.pyc and b/llava/model/__pycache__/llava_arch.cpython-39.pyc differ
|
|
llava/model/builder.py
CHANGED
@@ -40,8 +40,7 @@ def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, l
|
|
40 |
bnb_4bit_quant_type='nf4'
|
41 |
)
|
42 |
else:
|
43 |
-
kwargs['torch_dtype'] = torch.
|
44 |
-
# kwargs['torch_dtype'] = torch.float16
|
45 |
|
46 |
if use_flash_attn:
|
47 |
kwargs['attn_implementation'] = 'flash_attention_2'
|
|
|
40 |
bnb_4bit_quant_type='nf4'
|
41 |
)
|
42 |
else:
|
43 |
+
kwargs['torch_dtype'] = torch.float16
|
|
|
44 |
|
45 |
if use_flash_attn:
|
46 |
kwargs['attn_implementation'] = 'flash_attention_2'
|
llava/model/language_model/__pycache__/llava_llama.cpython-39.pyc
CHANGED
Binary files a/llava/model/language_model/__pycache__/llava_llama.cpython-39.pyc and b/llava/model/language_model/__pycache__/llava_llama.cpython-39.pyc differ
|
|
llava/model/language_model/llava_llama.py
CHANGED
@@ -17,14 +17,370 @@ from typing import List, Optional, Tuple, Union
|
|
17 |
|
18 |
import torch
|
19 |
import torch.nn as nn
|
|
|
20 |
|
21 |
from transformers import AutoConfig, AutoModelForCausalLM, \
|
22 |
-
LlamaConfig,
|
23 |
|
24 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
25 |
from transformers.generation.utils import GenerateOutput
|
26 |
|
27 |
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
class LlavaConfig(LlamaConfig):
|
@@ -68,6 +424,7 @@ class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
|
|
68 |
images: Optional[torch.FloatTensor] = None,
|
69 |
image_sizes: Optional[List[List[int]]] = None,
|
70 |
return_dict: Optional[bool] = None,
|
|
|
71 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
72 |
|
73 |
if inputs_embeds is None:
|
|
|
17 |
|
18 |
import torch
|
19 |
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
|
22 |
from transformers import AutoConfig, AutoModelForCausalLM, \
|
23 |
+
LlamaConfig, LlamaForCausalLM, LlamaPreTrainedModel
|
24 |
|
25 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
|
26 |
from transformers.generation.utils import GenerateOutput
|
27 |
|
28 |
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
29 |
+
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm
|
30 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask
|
31 |
+
from transformers.cache_utils import Cache, DynamicCache
|
32 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
33 |
+
from transformers.utils import logging
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
class LlamaModel(LlamaPreTrainedModel):
|
38 |
+
"""
|
39 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
40 |
+
|
41 |
+
Args:
|
42 |
+
config: LlamaConfig
|
43 |
+
"""
|
44 |
+
|
45 |
+
def __init__(self, config: LlamaConfig):
|
46 |
+
super().__init__(config)
|
47 |
+
self.padding_idx = config.pad_token_id
|
48 |
+
self.vocab_size = config.vocab_size
|
49 |
+
|
50 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
51 |
+
self.layers = nn.ModuleList(
|
52 |
+
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
53 |
+
)
|
54 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
55 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
56 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
57 |
+
|
58 |
+
self.gradient_checkpointing = False
|
59 |
+
# Initialize weights and apply final processing
|
60 |
+
self.post_init()
|
61 |
+
|
62 |
+
def get_input_embeddings(self):
|
63 |
+
return self.embed_tokens
|
64 |
+
|
65 |
+
def set_input_embeddings(self, value):
|
66 |
+
self.embed_tokens = value
|
67 |
+
|
68 |
+
def forward(
|
69 |
+
self,
|
70 |
+
input_ids: torch.LongTensor = None,
|
71 |
+
attention_mask: Optional[torch.Tensor] = None,
|
72 |
+
position_ids: Optional[torch.LongTensor] = None,
|
73 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
74 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
75 |
+
use_cache: Optional[bool] = None,
|
76 |
+
output_attentions: Optional[bool] = None,
|
77 |
+
output_hidden_states: Optional[bool] = None,
|
78 |
+
return_dict: Optional[bool] = None,
|
79 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
80 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
81 |
+
output_hidden_states = (
|
82 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
83 |
+
)
|
84 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
85 |
+
|
86 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
87 |
+
|
88 |
+
# retrieve input_ids and inputs_embeds
|
89 |
+
if input_ids is not None and inputs_embeds is not None:
|
90 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
91 |
+
elif input_ids is not None:
|
92 |
+
batch_size, seq_length = input_ids.shape[:2]
|
93 |
+
elif inputs_embeds is not None:
|
94 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
95 |
+
else:
|
96 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
97 |
+
|
98 |
+
if self.gradient_checkpointing and self.training:
|
99 |
+
if use_cache:
|
100 |
+
logger.warning_once(
|
101 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
102 |
+
)
|
103 |
+
use_cache = False
|
104 |
+
|
105 |
+
past_key_values_length = 0
|
106 |
+
if use_cache:
|
107 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
108 |
+
if use_legacy_cache:
|
109 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
110 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
111 |
+
|
112 |
+
if position_ids is None:
|
113 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
114 |
+
position_ids = torch.arange(
|
115 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
116 |
+
)
|
117 |
+
position_ids = position_ids.unsqueeze(0)
|
118 |
+
|
119 |
+
if inputs_embeds is None:
|
120 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
121 |
+
|
122 |
+
if self._use_flash_attention_2:
|
123 |
+
# 2d mask is passed through the layers
|
124 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
125 |
+
elif self._use_sdpa and not output_attentions:
|
126 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
127 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
128 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
129 |
+
attention_mask,
|
130 |
+
(batch_size, seq_length),
|
131 |
+
inputs_embeds,
|
132 |
+
past_key_values_length,
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
# 4d mask is passed through the layers
|
136 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
137 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
138 |
+
)
|
139 |
+
|
140 |
+
# embed positions
|
141 |
+
hidden_states = inputs_embeds
|
142 |
+
|
143 |
+
# decoder layers
|
144 |
+
all_hidden_states = () if output_hidden_states else None
|
145 |
+
all_self_attns = () if output_attentions else None
|
146 |
+
next_decoder_cache = None
|
147 |
+
|
148 |
+
for decoder_layer in self.layers:
|
149 |
+
if output_hidden_states:
|
150 |
+
all_hidden_states += (hidden_states,)
|
151 |
+
|
152 |
+
if self.gradient_checkpointing and self.training:
|
153 |
+
layer_outputs = self._gradient_checkpointing_func(
|
154 |
+
decoder_layer.__call__,
|
155 |
+
hidden_states,
|
156 |
+
attention_mask,
|
157 |
+
position_ids,
|
158 |
+
past_key_values,
|
159 |
+
output_attentions,
|
160 |
+
use_cache,
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
layer_outputs = decoder_layer.float()(
|
164 |
+
hidden_states,
|
165 |
+
attention_mask=attention_mask,
|
166 |
+
position_ids=position_ids,
|
167 |
+
past_key_value=past_key_values,
|
168 |
+
output_attentions=output_attentions,
|
169 |
+
use_cache=use_cache,
|
170 |
+
)
|
171 |
+
|
172 |
+
hidden_states = layer_outputs[0]
|
173 |
+
|
174 |
+
if use_cache:
|
175 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
176 |
+
|
177 |
+
if output_attentions:
|
178 |
+
all_self_attns += (layer_outputs[1],)
|
179 |
+
|
180 |
+
hidden_states = self.norm(hidden_states)
|
181 |
+
|
182 |
+
# add hidden states from the last decoder layer
|
183 |
+
if output_hidden_states:
|
184 |
+
all_hidden_states += (hidden_states,)
|
185 |
+
|
186 |
+
next_cache = None
|
187 |
+
if use_cache:
|
188 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
189 |
+
if not return_dict:
|
190 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
191 |
+
return BaseModelOutputWithPast(
|
192 |
+
last_hidden_state=hidden_states,
|
193 |
+
past_key_values=next_cache,
|
194 |
+
hidden_states=all_hidden_states,
|
195 |
+
attentions=all_self_attns,
|
196 |
+
)
|
197 |
+
|
198 |
+
|
199 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
200 |
+
_tied_weights_keys = ["lm_head.weight"]
|
201 |
+
|
202 |
+
def __init__(self, config):
|
203 |
+
super().__init__(config)
|
204 |
+
self.model = LlamaModel(config)
|
205 |
+
self.vocab_size = config.vocab_size
|
206 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
207 |
+
|
208 |
+
# Initialize weights and apply final processing
|
209 |
+
self.post_init()
|
210 |
+
|
211 |
+
def get_input_embeddings(self):
|
212 |
+
return self.model.embed_tokens
|
213 |
+
|
214 |
+
def set_input_embeddings(self, value):
|
215 |
+
self.model.embed_tokens = value
|
216 |
+
|
217 |
+
def get_output_embeddings(self):
|
218 |
+
return self.lm_head
|
219 |
+
|
220 |
+
def set_output_embeddings(self, new_embeddings):
|
221 |
+
self.lm_head = new_embeddings
|
222 |
+
|
223 |
+
def set_decoder(self, decoder):
|
224 |
+
self.model = decoder
|
225 |
+
|
226 |
+
def get_decoder(self):
|
227 |
+
return self.model
|
228 |
+
|
229 |
+
def forward(
|
230 |
+
self,
|
231 |
+
input_ids: torch.LongTensor = None,
|
232 |
+
attention_mask: Optional[torch.Tensor] = None,
|
233 |
+
position_ids: Optional[torch.LongTensor] = None,
|
234 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
235 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
236 |
+
labels: Optional[torch.LongTensor] = None,
|
237 |
+
use_cache: Optional[bool] = None,
|
238 |
+
output_attentions: Optional[bool] = None,
|
239 |
+
output_hidden_states: Optional[bool] = None,
|
240 |
+
return_dict: Optional[bool] = None,
|
241 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
242 |
+
r"""
|
243 |
+
Args:
|
244 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
245 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
246 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
247 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
|
251 |
+
Example:
|
252 |
+
|
253 |
+
```python
|
254 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
255 |
+
|
256 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
257 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
258 |
+
|
259 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
260 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
261 |
+
|
262 |
+
>>> # Generate
|
263 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
264 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
265 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
266 |
+
```"""
|
267 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
268 |
+
output_hidden_states = (
|
269 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
270 |
+
)
|
271 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
272 |
+
|
273 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
274 |
+
outputs = self.model(
|
275 |
+
input_ids=input_ids,
|
276 |
+
attention_mask=attention_mask,
|
277 |
+
position_ids=position_ids,
|
278 |
+
past_key_values=past_key_values,
|
279 |
+
inputs_embeds=inputs_embeds,
|
280 |
+
use_cache=use_cache,
|
281 |
+
output_attentions=output_attentions,
|
282 |
+
output_hidden_states=output_hidden_states,
|
283 |
+
return_dict=return_dict,
|
284 |
+
)
|
285 |
+
|
286 |
+
hidden_states = outputs[0]
|
287 |
+
if self.config.pretraining_tp > 1:
|
288 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
289 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
290 |
+
logits = torch.cat(logits, dim=-1)
|
291 |
+
else:
|
292 |
+
logits = self.lm_head.float()(hidden_states)
|
293 |
+
logits = logits.float()
|
294 |
+
|
295 |
+
loss = None
|
296 |
+
if labels is not None:
|
297 |
+
# Shift so that tokens < n predict n
|
298 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
299 |
+
shift_labels = labels[..., 1:].contiguous()
|
300 |
+
# Flatten the tokens
|
301 |
+
loss_fct = CrossEntropyLoss()
|
302 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
303 |
+
shift_labels = shift_labels.view(-1)
|
304 |
+
# Enable model parallelism
|
305 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
306 |
+
loss = loss_fct(shift_logits, shift_labels)
|
307 |
+
|
308 |
+
if not return_dict:
|
309 |
+
output = (logits,) + outputs[1:]
|
310 |
+
return (loss,) + output if loss is not None else output
|
311 |
+
|
312 |
+
return CausalLMOutputWithPast(
|
313 |
+
loss=loss,
|
314 |
+
logits=logits,
|
315 |
+
past_key_values=outputs.past_key_values,
|
316 |
+
hidden_states=outputs.hidden_states,
|
317 |
+
attentions=outputs.attentions,
|
318 |
+
)
|
319 |
+
|
320 |
+
def prepare_inputs_for_generation(
|
321 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
322 |
+
):
|
323 |
+
if past_key_values is not None:
|
324 |
+
if isinstance(past_key_values, Cache):
|
325 |
+
cache_length = past_key_values.get_seq_length()
|
326 |
+
past_length = past_key_values.seen_tokens
|
327 |
+
max_cache_length = past_key_values.get_max_length()
|
328 |
+
else:
|
329 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
330 |
+
max_cache_length = None
|
331 |
+
|
332 |
+
# Keep only the unprocessed tokens:
|
333 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
334 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
335 |
+
# input)
|
336 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
337 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
338 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
339 |
+
# input_ids based on the past_length.
|
340 |
+
elif past_length < input_ids.shape[1]:
|
341 |
+
input_ids = input_ids[:, past_length:]
|
342 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
343 |
+
|
344 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
345 |
+
if (
|
346 |
+
max_cache_length is not None
|
347 |
+
and attention_mask is not None
|
348 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
349 |
+
):
|
350 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
351 |
+
|
352 |
+
position_ids = kwargs.get("position_ids", None)
|
353 |
+
if attention_mask is not None and position_ids is None:
|
354 |
+
# create position_ids on the fly for batch generation
|
355 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
356 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
357 |
+
if past_key_values:
|
358 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
359 |
+
|
360 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
361 |
+
if inputs_embeds is not None and past_key_values is None:
|
362 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
363 |
+
else:
|
364 |
+
model_inputs = {"input_ids": input_ids}
|
365 |
+
|
366 |
+
model_inputs.update(
|
367 |
+
{
|
368 |
+
"position_ids": position_ids,
|
369 |
+
"past_key_values": past_key_values,
|
370 |
+
"use_cache": kwargs.get("use_cache"),
|
371 |
+
"attention_mask": attention_mask,
|
372 |
+
}
|
373 |
+
)
|
374 |
+
return model_inputs
|
375 |
+
|
376 |
+
@staticmethod
|
377 |
+
def _reorder_cache(past_key_values, beam_idx):
|
378 |
+
reordered_past = ()
|
379 |
+
for layer_past in past_key_values:
|
380 |
+
reordered_past += (
|
381 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
382 |
+
)
|
383 |
+
return reordered_past
|
384 |
|
385 |
|
386 |
class LlavaConfig(LlamaConfig):
|
|
|
424 |
images: Optional[torch.FloatTensor] = None,
|
425 |
image_sizes: Optional[List[List[int]]] = None,
|
426 |
return_dict: Optional[bool] = None,
|
427 |
+
cache_position = None
|
428 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
429 |
|
430 |
if inputs_embeds is None:
|
llava/model/llava_arch.py
CHANGED
@@ -139,7 +139,7 @@ class LlavaMetaForCausalLM(ABC):
|
|
139 |
|
140 |
def encode_images(self, images):
|
141 |
image_features = self.get_model().get_vision_tower()(images)
|
142 |
-
image_features = self.get_model().mm_projector(image_features)
|
143 |
return image_features
|
144 |
|
145 |
def prepare_inputs_labels_for_multimodal(
|
|
|
139 |
|
140 |
def encode_images(self, images):
|
141 |
image_features = self.get_model().get_vision_tower()(images)
|
142 |
+
image_features = self.get_model().mm_projector.float()(image_features.float())
|
143 |
return image_features
|
144 |
|
145 |
def prepare_inputs_labels_for_multimodal(
|
llava/model/multimodal_encoder/__pycache__/clip_encoder.cpython-39.pyc
CHANGED
Binary files a/llava/model/multimodal_encoder/__pycache__/clip_encoder.cpython-39.pyc and b/llava/model/multimodal_encoder/__pycache__/clip_encoder.cpython-39.pyc differ
|
|
llava/model/multimodal_encoder/clip_encoder.py
CHANGED
@@ -1,7 +1,134 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
|
4 |
-
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
|
7 |
class CLIPVisionTower(nn.Module):
|
@@ -51,7 +178,7 @@ class CLIPVisionTower(nn.Module):
|
|
51 |
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
52 |
image_features.append(image_feature)
|
53 |
else:
|
54 |
-
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
|
55 |
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
56 |
|
57 |
return image_features
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
|
4 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig, CLIPPreTrainedModel
|
5 |
+
from transformers.models.clip.modeling_clip import CLIPEncoder
|
6 |
+
from typing import Any, Optional, Tuple, Union
|
7 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
8 |
+
|
9 |
+
|
10 |
+
class CLIPVisionEmbeddings(nn.Module):
|
11 |
+
def __init__(self, config: CLIPVisionConfig):
|
12 |
+
super().__init__()
|
13 |
+
self.config = config
|
14 |
+
self.embed_dim = config.hidden_size
|
15 |
+
self.image_size = config.image_size
|
16 |
+
self.patch_size = config.patch_size
|
17 |
+
|
18 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
19 |
+
|
20 |
+
self.patch_embedding = nn.Conv2d(
|
21 |
+
in_channels=config.num_channels,
|
22 |
+
out_channels=self.embed_dim,
|
23 |
+
kernel_size=self.patch_size,
|
24 |
+
stride=self.patch_size,
|
25 |
+
bias=False,
|
26 |
+
)
|
27 |
+
|
28 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
29 |
+
self.num_positions = self.num_patches + 1
|
30 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
31 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
32 |
+
|
33 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
34 |
+
batch_size = pixel_values.shape[0]
|
35 |
+
target_dtype = self.patch_embedding.weight.dtype
|
36 |
+
patch_embeds = self.patch_embedding.float()(pixel_values) # shape = [*, width, grid, grid]
|
37 |
+
patch_embeds = patch_embeds.to(target_dtype)
|
38 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
39 |
+
|
40 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
41 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
42 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
43 |
+
return embeddings
|
44 |
+
|
45 |
+
|
46 |
+
class CLIPVisionTransformer(nn.Module):
|
47 |
+
def __init__(self, config: CLIPVisionConfig):
|
48 |
+
super().__init__()
|
49 |
+
self.config = config
|
50 |
+
embed_dim = config.hidden_size
|
51 |
+
|
52 |
+
self.embeddings = CLIPVisionEmbeddings(config)
|
53 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
54 |
+
self.encoder = CLIPEncoder(config)
|
55 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
56 |
+
|
57 |
+
def forward(
|
58 |
+
self,
|
59 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
60 |
+
output_attentions: Optional[bool] = None,
|
61 |
+
output_hidden_states: Optional[bool] = None,
|
62 |
+
return_dict: Optional[bool] = None,
|
63 |
+
):
|
64 |
+
r"""
|
65 |
+
Returns:
|
66 |
+
|
67 |
+
"""
|
68 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
69 |
+
output_hidden_states = (
|
70 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
71 |
+
)
|
72 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
73 |
+
|
74 |
+
if pixel_values is None:
|
75 |
+
raise ValueError("You have to specify pixel_values")
|
76 |
+
|
77 |
+
hidden_states = self.embeddings(pixel_values)
|
78 |
+
hidden_states = self.pre_layrnorm.float()(hidden_states.float())
|
79 |
+
|
80 |
+
encoder_outputs = self.encoder.float()(
|
81 |
+
inputs_embeds=hidden_states,
|
82 |
+
output_attentions=output_attentions,
|
83 |
+
output_hidden_states=output_hidden_states,
|
84 |
+
return_dict=return_dict,
|
85 |
+
)
|
86 |
+
|
87 |
+
last_hidden_state = encoder_outputs[0]
|
88 |
+
pooled_output = last_hidden_state[:, 0, :]
|
89 |
+
pooled_output = self.post_layernorm.float()(pooled_output)
|
90 |
+
|
91 |
+
if not return_dict:
|
92 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
93 |
+
|
94 |
+
return BaseModelOutputWithPooling(
|
95 |
+
last_hidden_state=last_hidden_state,
|
96 |
+
pooler_output=pooled_output,
|
97 |
+
hidden_states=encoder_outputs.hidden_states,
|
98 |
+
attentions=encoder_outputs.attentions,
|
99 |
+
)
|
100 |
+
|
101 |
+
|
102 |
+
class CLIPVisionModel(CLIPPreTrainedModel):
|
103 |
+
config_class = CLIPVisionConfig
|
104 |
+
main_input_name = "pixel_values"
|
105 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
106 |
+
|
107 |
+
def __init__(self, config: CLIPVisionConfig):
|
108 |
+
super().__init__(config)
|
109 |
+
self.vision_model = CLIPVisionTransformer(config)
|
110 |
+
# Initialize weights and apply final processing
|
111 |
+
self.post_init()
|
112 |
+
|
113 |
+
def get_input_embeddings(self) -> nn.Module:
|
114 |
+
return self.vision_model.embeddings.patch_embedding
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
119 |
+
output_attentions: Optional[bool] = None,
|
120 |
+
output_hidden_states: Optional[bool] = None,
|
121 |
+
return_dict: Optional[bool] = None,
|
122 |
+
):
|
123 |
+
|
124 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
125 |
+
|
126 |
+
return self.vision_model(
|
127 |
+
pixel_values=pixel_values,
|
128 |
+
output_attentions=output_attentions,
|
129 |
+
output_hidden_states=output_hidden_states,
|
130 |
+
return_dict=return_dict,
|
131 |
+
)
|
132 |
|
133 |
|
134 |
class CLIPVisionTower(nn.Module):
|
|
|
178 |
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
179 |
image_features.append(image_feature)
|
180 |
else:
|
181 |
+
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype).float(), output_hidden_states=True)
|
182 |
image_features = self.feature_select(image_forward_outs).to(images.dtype)
|
183 |
|
184 |
return image_features
|
requirements.txt
CHANGED
@@ -6,6 +6,7 @@ torchvision==0.16.2
|
|
6 |
peakutils
|
7 |
matplotlib
|
8 |
protobuf
|
9 |
-
transformers
|
10 |
sentencepiece
|
11 |
-
accelerate>=0.26.0
|
|
|
|
|
|
6 |
peakutils
|
7 |
matplotlib
|
8 |
protobuf
|
|
|
9 |
sentencepiece
|
10 |
+
accelerate>=0.26.0
|
11 |
+
bitsandbytes
|
12 |
+
transformers==4.37.2
|
video_keyframe_detector/KeyFrameDetector/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (250 Bytes). View file
|
|
video_keyframe_detector/KeyFrameDetector/__pycache__/key_frame_detector.cpython-39.pyc
ADDED
Binary file (1.94 kB). View file
|
|
video_keyframe_detector/KeyFrameDetector/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (2.07 kB). View file
|
|
video_keyframe_detector/__pycache__/cli.cpython-39.pyc
ADDED
Binary file (744 Bytes). View file
|
|