''' @Description: @Author: jiajunlong @Date: 2024-06-19 19:30:17 @LastEditTime: 2024-06-19 19:32:47 @LastEditors: jiajunlong ''' import argparse import requests from PIL import Image from io import BytesIO import torch from transformers import TextStreamer from tinyllava.utils import * from tinyllava.data import * from tinyllava.model import * def load_image(image_file): if image_file.startswith('http://') or image_file.startswith('https://'): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert('RGB') else: image = Image.open(image_file).convert('RGB') return image def main(args): # Model disable_torch_init() if args.model_path is not None: model, tokenizer, image_processor, context_len = load_pretrained_model(model_name_or_path=args.model_path, load_8bit=args.load_8bit, load_4bit=args.load_4bit, device=args.device) else: assert args.model is not None, 'model_path or model must be provided' model = args.model if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 tokenizer = model.tokenizer image_processor = model.vision_tower._image_processor text_processor = TextPreprocess(tokenizer, args.conv_mode) data_args = model.config image_processor = ImagePreprocess(image_processor, data_args) model.to(args.device) if getattr(text_processor.template, 'role', None) is None: roles = ['USER', 'ASSISTANT'] else: roles = text_processor.template.role.apply() msg = Message() image = load_image(args.image_file) # Similar operation in model_worker.py image_tensor = image_processor(image) image_tensor = image_tensor.unsqueeze(0).to(model.device, dtype=torch.float16) while True: try: inp = input(f"{roles[0]}: ") except EOFError: inp = "" if not inp: print("exit...") break print(f"{roles[1]}: ", end="") if image is not None: # first message inp = DEFAULT_IMAGE_TOKEN + '\n' + inp msg.add_message(inp) image = None else: # later messages msg.add_message(inp) result = text_processor(msg.messages, mode='eval') prompt = result['prompt'] input_ids = result['input_ids'].unsqueeze(0).to(model.device) # stop_str = text_processor.template.separator.apply()[1] # keywords = [stop_str] # stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, do_sample=True if args.temperature > 0 else False, temperature=args.temperature, max_new_tokens=args.max_new_tokens, streamer=streamer, use_cache=True, pad_token_id = tokenizer.eos_token_id, # stopping_criteria=[stopping_criteria] ) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() msg.messages[-1]['value'] = outputs if args.debug: print("\n", {"prompt": prompt, "outputs": outputs}, "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, default="tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B") parser.add_argument("--model", type=str, default=None) parser.add_argument("--image-file", type=str, required=True) parser.add_argument("--device", type=str, default="cuda") parser.add_argument("--conv-mode", type=str, default='phi') parser.add_argument("--temperature", type=float, default=0.2) parser.add_argument("--max-new-tokens", type=int, default=512) parser.add_argument("--load-8bit", action="store_true") parser.add_argument("--load-4bit", action="store_true") parser.add_argument("--debug", action="store_true") args = parser.parse_args() main(args)