import os import gradio as gr import pinecone from gpt_index import GPTIndexMemory, GPTPineconeIndex from langchain.agents import Tool from langchain.chains.conversation.memory import ConversationBufferMemory from langchain import OpenAI from langchain.agents import initialize_agent OPENAI_API_KEY=os.environ.get("OPENAI_API_KEY") PINECONE_API_KEY=os.environ.get("PINECONE_API_KEY") PINECONE_ENV=os.environ.get("PINECONE_ENV") pindex=pinecone.Index("sethgodin") pinedex=GPTPineconeIndex([], pinecone_index=pindex) tools = [ Tool( name = "GPT Index", func=lambda q: str(pinedex.query(q)), description="useful for when you want to answer questions about the author. The input to this tool should be a complete english sentence.", return_direct=True ), ] memory = ConversationBufferMemory(memory_key="chat_history") llm=OpenAI(temperature=0) agent_chain = initialize_agent(tools, llm, agent="conversational-react-description", memory=memory) def predict(input, history=[]): # generate a response history = agent_chain.run(input=input) response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list return response, history with gr.Blocks() as demo: chatbot = gr.Chatbot() state = gr.State([]) with gr.Row(): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False) txt.submit(predict, [txt, state], [chatbot, state]) demo.launch()