File size: 7,442 Bytes
8d8cebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading settings from ../../env/ai.json\n"
]
}
],
"source": [
"import os\n",
"import json\n",
"\n",
"# If the file does not exist it'll default to the manual setting see below\n",
"filePathToSettingsFile = '../../env/ai.json'\n",
"\n",
"# Is there a settings file? \n",
"if os.path.exists(filePathToSettingsFile):\n",
" # Yes there is so load settings from there\n",
" \n",
" print(f'Loading settings from {filePathToSettingsFile}')\n",
" f = open(filePathToSettingsFile)\n",
" settingsJson = json.load(f)\n",
" del f\n",
"\n",
" for key in settingsJson:\n",
" os.environ[key] = settingsJson[key]\n",
" \n",
" del settingsJson\n",
"else: \n",
" # Set variables manually\n",
" \n",
" print('Setting variables manually as there is not ai.json settings file')\n",
"\n",
" # Update the variables below with your own settings\n",
" os.environ['REQUESTS_CA_BUNDLE'] = '../../env/ZCert.pem' \n",
" os.environ['HUGGING_FACE_API_KEY'] = 'Get here: https://huggingface.co/settings/tokens'\n",
" os.environ['OPENAI_API_KEY'] = 'Get here: https://platform.openai.com/account/api-keys'\n",
" os.environ[\"SERPAPI_API_KEY\"] = 'serpapi KEY, Get here: https://serpapi.com/manage-api-key' "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Load data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"# https://github.com/gkamradt/langchain-tutorials/blob/main/data_generation/Ask%20A%20Book%20Questions.ipynb\n",
"from langchain.document_loaders import UnstructuredPDFLoader, OnlinePDFLoader, PyPDFLoader\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"import glob\n",
"from pdfminer.high_level import extract_text\n",
"\n",
"rootFolder = '../rag-demo-1-data/'\n",
"literatureFolder = 'literature/'\n",
"historyOfRomeFolder = 'history-roman/'\n",
"\n",
"currentFolder = f'{rootFolder}{literatureFolder}'\n"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"for filename in glob.glob(f\"{currentFolder}*.pdf\"):\n",
"\n",
" print(f'About to extract {filename}')\n",
" try:\n",
" text = extract_text(filename)\n",
" text = text.encode('ascii', errors='ignore').decode('ascii')\n",
"\n",
" textFilename = f'{filename}.txt'\n",
" print(textFilename)\n",
" with open(textFilename, 'w') as f:\n",
" f.write(text)\n",
" \n",
" os.rename(filename, f\"{filename}.done\")\n",
" except Exception as err:\n",
" print(f\"Error with file {filename} {err}\")"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import DirectoryLoader\n",
"from langchain.document_loaders import TextLoader\n",
"\n",
"loader = DirectoryLoader(currentFolder, glob=\"**/*.txt\", loader_cls=TextLoader)\n",
"docs = loader.load()\n",
"\n",
"print(len(docs))\n",
"print(len(docs[0].page_content))"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"16596\n"
]
}
],
"source": [
"text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\n",
"texts = text_splitter.split_documents(docs)\n",
"print(len(texts))"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'source': '..\\\\rag-demo-1-data\\\\literature\\\\moby-dick.pdf.txt'}\n"
]
}
],
"source": [
"#print(texts[8000].page_content)\n",
"print(texts[8000].metadata)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Create embeddings"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"from langchain.vectorstores import Pinecone\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"import pinecone\n",
"\n",
"embeddings = OpenAIEmbeddings(openai_api_key=os.environ['OPENAI_API_KEY'])"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"index_name = \"\" # put in the name of your pinecone index here\n",
"pinecone.init(api_key='', environment='gcp-starter')"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"docsearch = Pinecone.from_documents(texts, embeddings, index_name=index_name)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"query = \"What is moby dick?\"\n",
"searchResult = docsearch.similarity_search(query, k=5)"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"..\\rag-demo-1-data\\literature\\moby-dick.pdf.txt\n",
"Moby Dick By Herman MelvilleDownload free eBooks of classic literature, books and \n",
"novels at Planet eBook. Subscribe to our free eBooks blog \n",
"and email newsletter.\fETYMOLOGY.(Supplied by a Late Consumptive Usher to a Grammar \n",
"School)The pale Usherthreadbare in coat, heart, body, and \n",
"brain; I see him now. He was ever dusting his old lexicons \n",
"and grammars, with a queer handkerchief, mockingly em-\n",
"bellished with all the gay flags of all the known nations of \n",
"the world. He loved to dust his old grammars; it somehow \n",
"mildly reminded him of his mortality.While you take in hand to school others, and to teach them \n",
"by what name a whale-fish is to be called in our tongue \n",
"leaving out, through ignorance, the letter H, which almost \n",
"alone maketh the signification of the word, you deliver that \n",
"which is not true. HACKLUYTWHALE. Sw. and Dan. HVAL. This animal is named from \n",
"roundness or rolling; for in Dan. HVALT is arched or vaulted.\n"
]
}
],
"source": [
"\n",
"print(searchResult[0].metadata['source'])\n",
"print(searchResult[0].page_content)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|