import gradio as gr from typing import List from PIL import Image from zhclip import ZhCLIPProcessor, ZhCLIPModel # From https://www.github.com/thu-ml/zh-clip version = 'thu-ml/zh-clip-vit-roberta-large-patch14' model = ZhCLIPModel.from_pretrained(version) processor = ZhCLIPProcessor.from_pretrained(version) def inference(image, texts): texts = [x[0] for x in texts] inputs = processor(text=texts, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) image_features = outputs.image_features text_features = outputs.text_features text_probs = (image_features @ text_features.T).softmax(dim=-1)[0].detach().cpu().numpy() return {i: float(text_probs[i]) for i in range(len(text_probs))} title = "ZH-CLIP zero-shot classification" description = "Chinese Clip Model (ZH-CLIP) zero-shot classification" article="
github: zh-clip huggingface model: thu-ml/zh-clip-vit-roberta-large-patch14
" examples = [['./images/dog.jpeg', [['一只狗'], ['一只猫']]]] interpretation='default' enable_queue=True iface = gr.Interface(fn=inference, inputs=["image", "list"], outputs="label", title=title, description=description, article=article, examples=examples, enable_queue=enable_queue) iface.launch(server_name='0.0.0.0')